Х - скорость первого 900 : 5 = 180 км/ч - скорость сближения, (по-другому, это сумма скоростей) (180 - х) - скорость второго (х + 10) - новая скорость первого (180 - х - 40) = (140 - х) - новая скорость второго (х + 10) + (140 - х) = 150 км/ч - новая скорость сближения 900 : 150 = 6ч - через 6ч встретятся при новых скоростях Уравнение (х + 10) ·6 - (140 - х) · 6 = 180 6х + 60 - 840 + 6х = 180 12х - 780 = 180 12х = 780 + 180 12х = 960 х = 960 : 12 х = 80 км/ч - скорость первого 180 - 80 = 100 км/ч - скорость второго
Эврика! это решение для тех, кто проходил уравнение с пропорцией. суммарно производительность двух насосов после ремонта стала 2,8 единиц. заполненный бассейн примем как выполненная на 100% работа. первый насос после ремонта стал выдавать 1,2 единиц производительности, значит можно узнать, какой процент от всей работы он выполнял. пропорция: 2,8=100%, 1,2=х% переведем все цифры в неправильные дроби и оставим их такими до конечного результата (так не будет бесконечных десятичных дробей) и получим : 28/10=100%, 12/10=х%, отсюда х%=120: 28/10=300/7 если первый насос за 6 часов выполнил 300/7% от всей работы, то за сколько времени он выполнит 100% работы? переведем часы в минуты, так как легче минуты сложить в часы, чем высчитывать их по дробям. 6 часов=360 минут снова уравнение с пропорцией: 360 мин=300/7%, х мин=100%, отсюда х (мин)=36000(мин) : 300/7(%)=252000/300=840(мин) теперь полученные минуты переводим в часы: 840: 60=14(часов) ответ: первый насос после ремонта заполнит бассейн самостоятельно за 14 часов.
-10 108 10-9,5 97,75 10-9 88 10-8,5 78,75 10-8 70 10-7,5 61,75 10-7 54 10-6,5 46,75 10-6 40 10-5,5 33,75 10-5 28 10-4,5 22,75 10-4 18 10-3,5 13,75 10-3 10 10-2,5 6,75 10-2 4 10-1,5 1,75 10-1 0 10-0,5 -1,25 100 -2 100,5 -2,25 101 -2 101,5 -1,25 102 0 102,5 1,75 103 4 103,5 6,75 104 10 104,5 13,75 105 18 105,5 22,75 106 28 106,5 33,75 107 40 107,5 46,75 108 54 108,5 61,75 109 70 109,5 78,75 1010 88 10