Если катер вышел в 9.00 и прибыл назад в 16.00, значит в дороге он был 7 часов. V собств. = х км/ч; 1час 40мин = 1 2/3ч = 5/3 ч S V t туда 30 км х + 3 км/ч 30/(х +3)ч обратно 30 км х - 3 км/ч 30/(х -3) ч 30/(х +3) + 30/(х -3) = 7 - 5/3 30/(х +3) + 30/(х -3) = 16/3 | * 3(x +3)(x -3) 90(x - 3) + 90(x +3) = 16x² -9) 90x -270 + 90x +270 = 16x² - 144 16x² - 180x - 144 =0 4x² - 45x -36 = 0 x₁ = -6/8 ( не подходит по условию задачи) х₂ = 12 (км/ч) - собственная скорость катера.
1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
Правило без примера не существует, поэтому давай начнём с примера. Как раз возьмем эти 2 числа. К примеру
4:3=1 целых и 1 в остатке
7:3=2 целых и 1 в остатке
Теперь произведение:
4*7 =28 = 9 целых и 1 в остатке
3 3
Но нет правил без исключений, поэтому мы можем проверить ещё и на других числах:
10:3 = 3 целых и 1 в остатке
13:3 = 4 целых и 1 в остатке
10*13 = 130:3=43 целых 1 в остатке
3