М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mila19911
Mila19911
03.06.2022 06:38 •  Алгебра

Начертите отрезок ав , длина которого равна 3 см .найдите точку удаленную от каждого из коцов отрезка ав на 2 см .сколько существует таких точек?

👇
Ответ:
Alexey2005201937
Alexey2005201937
03.06.2022
2 точки , допустим С и Д 
4,5(50 оценок)
Ответ:
Natali20171
Natali20171
03.06.2022
4 точки, сверху отрезка 2 и снизу 2
4,5(19 оценок)
Открыть все ответы
Ответ:
evelinastepenko
evelinastepenko
03.06.2022
По определению
|x|= \left \{ {{x, x \geq 0} \atop {-x,x
Поэтому
|x-2|= \left \{ {{x-2,x-2 \geq 0} \atop {-x+2,x-2
т.е
слева от точки 2 подмодульное                     справа от точки 2 подмодульное
выражение берется со знаком "-"                 выражение  со знаком "+"
                     -                                                                     +
--------------------------------------------------------(2)------------------
Аналогично
|x-4|= \left \{ {{x-4,x-4 \geq 0} \atop {-x+4,x-4
т.е
слева от точки 4 подмодульное                                справа от точки 4 подмодульное
выражение берется со знаком "-"                            выражение со знаком "+"
------------------------------------------------------------------(4)------------------
                             -                                                                        +
Изобразим на одной координатной прямой. Причем знаки первого подмодульного выражения будем изображать наверху, знаки второго - внизу
                             -                              +                            +
--------------------------------------(2)--------------------(4)--------------
                             -                               -                            +
Раскрываем модули на (-∞;2].
 Оба подмодульных выражения раскрываем с противоположным знаком:   |x-2|=-(x-2)=-х+2 ;   |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
-x+2-x+4=3
-2х+6=3
-2х=-3
х=3/2
х=1,5
1,5 ∈(-∞;2]

Раскрываем модули на (-2;4]:    |x-2|=x-2 ;   |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
x-2-x+4=3
2=3 -неверное равенство
Уравнение не имеет корней

Раскрываем модули на (4;+∞).
 Оба подмодульных выражения раскрываем не меняют выражения: 
 |x-2|=x-2 ;   |x-4|=x-4
Уравнение принимает вид:
x-2+x-4=3
2х-6=3
2х=9
х=9/2
х=4,5
4,5 ∈(4;+∞)
ответ. 1,5 ;  4,5
Остальные примеры решаются аналогично.
2)
       -                +                    +
 -----------(-2)-------------(3)------------
       +                +                  -
на (-∞;-2]   уравнение принимает вид:  -х+2-3(3-х)+х=0      или    3х=7    х= 7/3 - не принадлежит промежутку (-∞;-2), не является корнем уравнения
на (2;3]   уравнение принимает вид: х-2-3(3-х)+х=0        или    5х=11   или      х=2,2
2,2∈ (2;3] , значит  х=2,2 - корень уравнения
на (3;+∞)  уравнение принимает вид    х-2+3(3-х)+х=0    или    х=7
7∈(3;+∞), значит х=7  является корнем уравнения
ответ. 2,2 ; 7
3)
            -                          +                          +
------------------(1)--------------------(4)----------------
           +                          +                          -

на (-∞;1]  уравнение принимает вид:    4-х-2х+2=5-2х    или    х=1
1∈(-∞;1] , значит х=1 - корень уравнения.
на (1;4) уравнение принимает вид:    4-х+2х-2=5-2х          или    3х=3      или    х=1
1∉(1;4) , на данном промежутке уравнение не имеет корней
на (4;+∞)  уравнение принимает вид:    -4+х+2х-2=5-2х      или    5х=11  или  х=2,2
2,2∉(4;+∞)  уравнение не имеет корней на данном промежутке
ответ. х=1
5)
|x|                  -                        -              +                    +
|3x+2|          -                        +              +                  +
|2x-1|           -                        -                -                  +
             ------------------(-2/3)-------(0)------------(1/2)---------------
(-∞;-2/3]      - x -3x - 2 - 2x +1 = 5      или  -6х=6      или    х=-1
-1∈(-∞;-2/3]   х=-1 - корень уравнения
(-2/3;0]        х - 3х - 2 - 2х + 1 = 5      или    -4х=6      или     х=-3/2
-3/2∉(-2/3;0]    х=-1,5 не является корнем уравнения
(0;1/2]        x+3x+2-2x+1=5        или      2х=2    или    х=1
1∉(0;1/2]    х=1 не является корнем уравнения
(1/2;+∞)      х+3х+2+2х-1=5      или    6х=4    х=  2/3
2/3∈(1/2;+∞)
ответ. х=-1 ; х=2/3
4,6(61 оценок)
Ответ:
timirshan
timirshan
03.06.2022
1)
2sin(x/2)=3sin²(x/2)
2sin(x/2)-3sin²(x/2)=0
sin(x/2) (2-3sin(x/2))=0

a) sin(x/2)=0
x/2=πk, k∈Z
x=2πk,  k∈Z

b)  2-3sin(x/2)=0
-3sin(x/2)=-2
sin(x/2)=2/3
x/2=(-1)^n * arcsin(2/3)+πk,  k∈Z
x=2*(-1)^n * arcsin(2/3)+2πk,  k∈Z

ответ: 2πk,  k∈Z;
            2*(-1)^k*arcsin(2/3)+2πk, k∈Z.

2)
sin6xcosx+cos6xsinx=0.5
sin(6x+x)=0.5
sin7x=0.5
7x=(-1)^k*(π/6)+πk,  k∈Z
x=(-1)^k*(π/42)+(π/7)*k,  k∈Z

ответ: (-1)^k*(π/42)+(π/7)*k,  k∈Z.

3)
3sinx+4sin(π/2+x)=0
3sinx+4cosx=0
3sin2*( \frac{x}{2} )+4cos2*( \frac{x}{2} )=0 \\ \\ 
3*2sin( \frac{x}{2} )cos( \frac{x}{2} )+4(cos^2( \frac{x}{2} )-sin^2( \frac{x}{2} ))=0 \\ \\ 
-4sin^2( \frac{x}{2} )+6sin( \frac{x}{2} )cos( \frac{x}{2} )+4cos^2( \frac{x}{2} )=0 \\ \\ 
2sin^2( \frac{x}{2} )-3sin( \frac{x}{2} )cos( \frac{x}{2} )+2cos^2( \frac{x}{2} )=0 \\ \\ 
 \frac{2sin^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}- \frac{3sin( \frac{x}{2} )cos( \frac{x}{2} )}{cos^2( \frac{x}{2} )}+ \frac{2cos^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}=0
2tg^2( \frac{x}{2} )-3tg( \frac{x}{2} )-2=0 \\ \\ 
y=tg( \frac{x}{2} ) \\ \\ 
2y^2-3y-2=0 \\ 
D=9+4*2*2=25 \\ 
y_{1} =\frac{3-5}{4}=- \frac{2}{4}=- \frac{1}{2} \\ \\ 
y_{2}= \frac{3+5}{4}=2

a) При у=-1/2
tg( \frac{x}{2} )=- \frac{1}{2} \\ 
 \frac{x}{2}=-arctg \frac{1}{2} + \pi k \\ \\ 
x=-2arctg \frac{1}{2}+2 \pi k,
k∈Z;

b)  При у=2
tg( \frac{x}{2} )=2 \\ 
 \frac{x}{2} =arctg2+ \pi k \\ \\ 
x=2arctg2+2 \pi k,
k∈Z.

ответ: -2arctg \frac{1}{2}+2 \pi k,k∈Z;
             2arctg2+2 \pi k,k∈Z.
4,8(70 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ