40 - первое число.
24 - второе число.
Объяснение:
Різниця двох чисел дорівнює 16, а 20% зменшуваного на 2 більше, ніж 25% від'ємника. Знайдіть ці числа.
Составляем систему уравнений согласно условия задания:
х - первое число.
у - второе число.
х-у=16
0,2х-0,25у=2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=16+у
0,2(16+у)-0,25у=2
3,2+0,2у-0,25у=2
-0,05у=2-3,2
-0,05у= -1,2
у= -1,2/-0,05
у=24 - второе число.
Теперь вычислить х:
х=16+у
х=16+24
х=40 - первое число.
Проверка:
40-24=16
0,2*40-0,25*24=8-6=2, верно.
f(x) = 7 - 6x - 3x²
Найдём производную f'(x)
f'(x) = -6 - 6x
f'(x) = 0
-6 - 6x = 0
x = -1
f'(x) ≥ 0 при x∈(-∞, -1] и f'(x) < 0 при x∈(-1, +∞) следовательно x = -1 - максимум.
ответ: максимум в точке x = -1
f(x) = x⁴ - 2x² + 1
f'(x) = 4x³ - 4x
f'(x) = 0
4x³ - 4x = 0
4x(x² - 1) = 0
x = -1, x = 0, x = 1
При x ∈ (-∞, -1) f'(x) < 0 и при x∈[-1, 0] f'(x) ≥ 0 следовательно x = -1 - минимум
При x∈[-1, 0] f'(x) ≥ 0 и при x∈(0, 1) f'(x) < 0 отсюда x = 0 - максимум
При x∈(0, 1) f'(x) < 0 и при x∈[1, +∞) f'(x) ≥ 0 отсюда следует, что x = 1 - минимум
ответ: минимум в точках x = -1 и x = 1. Максимум в точке x = 0