верно , обратное нет
Объяснение:
пусть р - простое , рассмотрим остатки от деления р на 6 :
p = 6b + q , где 0 ≤ q ≤ 5 , если q = 2 , то p = 2(3b+1) , это
число четно и больше 2 , значит не простое , если q = 3 , то
p = 3(2q+1) , это число кратно 3 и больше 3 и значит также не
простое , если q = 4 , то p = 2( 3b + 2) , это число четно и
больше 2 и следовательно не простое , если q = 0 , то p
кратно 6 и не может быть простым , остаются 2 варианта : 1)
q= 1 , то есть p = 6b+1 и 2) q = 5 ⇒ p = 6b + 5 = 6b+6-1 =
6(b+1) - 1 = 6k -1 , а значит любое простое имеет вид : p = 6n±1
обратное утверждение неверно : например число 35 = 6·6 - 1
, но простым число 35 не является
x2 + 11x - 1 = 0
знайдемо дискримінант квадратне рівняння
d = b2 - 4ac = 112 - 4·1·(-1) = 121 + 4 = 125
так як дискримінант більше нуля то, квадратне рівняння має два дійсних кореня:
x1 = -11 - √1252·1 = -5.5 - 2.5√5 ≈ -11.090169943749475x2 = -11 + √1252·1 = -5.5 + 2.5√5 ≈ 0.09016994374947451