а)так как прямая долна проходить через начало координат, то ее уравнение имеет вид:
у=кх
Подставляем координаты точки А(0,6;-2,4) через которую она проходит в уравнение, получаем: -2,4=0,6к
к=-2,4:0,6
к=-4
Значит уравнение прямой имеет вид : у=-4х
б)так как прямая пересекает оси в двух точках, то ее уравнение имеет вид:
у=kx+b
Подставляем координаты точки В(0; 4) в уравнение у=kx+b и получаем :
4=b
Подставляем координаты точки С(-2,5; 0) в уравнение у=kx+b и 4=b, получаем
0=-2,5к+4. Решаем:
-4=-2,5к
к=(-4):(-2,5)
к= 40/25=8/5=1,6
Значит уравнение прямой имеет вид: у=1,6х+4
Смотри задача нестандартная, поэтому все дело в понимании.
Пусть х чел ходит на шахматы, тогда 2х чел не ходит на шахматы, получаем
х+2х= от 20 до 30
С другой стороны,пусть у чел ходит на шашки, тогда 3у чел не ходит на шашки, получаем:
у+3у= от 20 до 30
Эти два уравнения должны выполнять одновременно, то есть мы должны найти только одно число от 20 до 30, при котором оба условия 3х=(20;30) и 4у=(20;30) выполняются одновременно. Такое число только одно - это 24.
Значит число учеников 24.
x^2+3*x^2-10x-9*x^2-100+60x=20
-5*x^2+50x-120=0
что бы было проще можно разделить уравнение на 5 или -5
x^2-10x+24=0
можно решать через дискриминант или теорему виета
D=100-4*1*24=100-96=4
D>0 следовательно 2 значения x
X1=(10+2)/2
X1=6
X2=(10-2)/2
X2=4
или по виетту:
X1+X2=-B
X1*X2=с
X1+X2=10
X1*X2=24
X1=6
X2=4
ответ:6;4