В решении.
Объяснение:
Одночлен, у которого единственный числовой множитель стоит на первом месте и буквенные множители в различных степенях не повторяются, называется одночленом стандартного вида.
Числовой сомножитель называют коэффициентом одночлена.
Степенью одночлена называют сумму показателей всех переменных входящих в этот одночлен.
Одночлен Станд.вид Коэффиц. Степень
1,2с⁴с⁸ 1,2с¹² 1,2 12
0,6m²n³*4m⁵n² 2,4m⁷n⁵ 2,4 7+5=12
2/7a²*3,5b a²b 1 2+1=3
-5x²*0,2xy -x³y -1 3+1=4
-1,6x³y⁶*0,5x²y⁵ -0,8x⁵y¹¹ -0,8 5+11=16
Если осевое сечение конуса - равносторонний треугольник, то в конусе половина образующей равна радиусу основания. Проведем осевое сечение и получившийся треугольник обозначим ABC, где A - вершина конуса. Опустим высоту AH - которая явл. так же медианой и биссектрисой.
BH обозначим r - радиус окружности в основании конуса.
BA тогда будет 2r
Из прямоугольного треугольника ABH:
AH² = BA² - BH²
AH² = 4r² - r²
AH² = 3r²
AH = r√3
Объем конуса V = πr²h/3 (где r - радиус основания, а h - высота)
V = πBH²AH²/3 = πr²r√3/3 = πr³√3/3
Но V так же равно 36.
πr³√3/3 = 36
r³ = 36√3/π
r = ∛(36√3/π)
Вычислим радиус вписанного шара - R
Осевое сечение шара является вписанной окружностью для треугольника в осевом сечении конуса. R этой окружности и R шара - одинаковы.
Так как треугольник ABC равносторонний R = a√3/6 (а - сторона треугольника)
Сторона треугольника - 2r = 2∛(36√3/π)
R = ∛(36√3/π)*√3/6
Vшар = 4πR³/3
Vшар = 4π(∛(36√3/π)*√3/6)³/3 = (4π(36√3/π)*3√3/36*6)/3 = 4*36√3*3√3/36*6*3 = 4/2 = 2
ответ: 2
б) (2а-5)(1-2а)=2а-4а^2
в) (3а-b)(2a+b)=6a^2+ab-b^2
г) (a-b)(2a-b-1)=2a^2-3ab+b
д) (х2-1)(х2+3)=x^4+2x^2-3
е)(2х-5)(2х+5)=4x^4-25