Область определения функции состоит из всех значений независимой переменной x, когда в уравнении функции отсутствуют выражения, которые могут не иметь смысла Линейная функция это функция имеющая вид y=kx+b, где k и b числа, а x переменная Для её построения нужно знать координаты двух точек (это прямая) Чтобы найти координаты точки пересечения графика с осью абсцисс нужно подставить под y число 0, так как в таких точках ордината равна 0 с осью ординат - под x подставляем 0, так как в таких точках абсцисса равна 0
Найдём вершину параболы х=-4/-2=2 у=-4+8-3=1 найдём нули функции -x^2+4x-3=0 x^2-4x+3=0 х1=3 х2=1 Построим параболу вершина параболы (2;1) и две точки пересечения с осью ОХ (3;0) (1;0) Ветви параболы направлены вниз Чтобы найти промежутки знакопостоянства функции по ее графику, нужно найти промежутки значений аргумента х, при которых график функции расположен выше оси ОХ – при этих значениях аргумента х функция больше 0. найти промежутки значений аргумента х, при которых график функции расположен ниже оси ОХ – при этих значениях аргумента х функция меньше 0. На промежутке (1;3) график расположен выше оси ОХ и функция принимает положительные значения. На промежутках (от минус бесконечности до1) и (от 3 до плюс бесконечности) функция расположена ниже оси ОХ и функция принимает отрицательные значения.
9x-3x^2=0
a)3x(3-1x)=0
3x=0
x=-3
б)3-1x=0
-1x=-3/*(-1)
x=3
(2х)в квадрате - 5х +2=0
D=b^2-4ac
D=-5^2-4*2*2=25-16=9
x1=2
x2=0.5