М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
asdfghjkl115
asdfghjkl115
17.02.2020 15:48 •  Алгебра

Решите логарифмические уравнения и их системы 1)lg(2x-1)=lg3 2)lg(3-x)=lg(x+2) 3)lgx+lg(x-1)=lg2 4)log5(x+1)=log5(4x-5) решить это уравнения буду

👇
Ответ:
sonua3
sonua3
17.02.2020
1)lg(2x-1)=lg3
ОДЗ: 2x-1>0; x>0,5
2x-1=3
2x=4
x=2 - в ОДЗ входит
ответ:{2}

2)lg(3-x)=lg(x+2)
ОДЗ:
{3-x>0
{x+2>0
x e (-2;3)
3-x=x+2
3-x-x=2
-2x=2-3
-2x=-1
x=0,5 - в ОДЗ входит
ответ:{0,5}

3)lgx+lg(x-1)=lg2
ОДЗ:
{x>0
{x-1>0
x e (1;+ беск.)
lgx(x-1)=lg2
x(x-1)=2
x^2-x-2=0
D=(-1)-4*1*(-2)=9
x1=(1-3)/2=-1 - посторонний корень
x2=(1+3)/2=2
ответ:{2}

4)log5(x+1)=log5(4x-5)
ОДЗ:
{x+1>0
{4x-5>0
x e (1,25; + беск.)
x+1=4x-5
x-4x=-5-1
-3x=-6
x=2
ответ:{2}
4,6(41 оценок)
Открыть все ответы
Ответ:
lap85928
lap85928
17.02.2020

Объяснение:

Найти площадь фигуры, ограниченной линиями:

у=х² +6х+12; х=-1; х=-3; у = 0​

Построим указанные кривые на координатной плоскости

у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).

Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы

у(-3) = 9 - 18 + 12 = 3

у(-1) = 1 - 6 + 12 = 7

Координаты двух других точек (-3;3) и (-1;7)

Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.

Данные прямые параллельны оси абсцисс  и проходят через точки (-1;0) и (-3;0) соответственно.

Прямая y=0 является осью ординат.

Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12

Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и  функцией х² +6х+12

S = \int\limits^{-1}_{-3} {(x^2+6x+12)} \, dx=\frac{x^3}{3}+3x^2+12x\left[\begin{array}{ccc}-1&\\-3\end{array}\right] = \frac{-1}{3}+3-12-(-\frac{27}{3}+27-36)= -\frac{1}{3}-9 +18 = 9-\frac{1}{3} = 8,67


Найти площадь фигуры, ограниченной линиями:у=х^2 +6х+12; х=-1; х=-3; у = 0​
4,5(16 оценок)
Ответ:
dashafirman
dashafirman
17.02.2020

Объяснение:

Найти площадь фигуры, ограниченной линиями:

у=х² +6х+12; х=-1; х=-3; у = 0​

Построим указанные кривые на координатной плоскости

у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).

Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы

у(-3) = 9 - 18 + 12 = 3

у(-1) = 1 - 6 + 12 = 7

Координаты двух других точек (-3;3) и (-1;7)

Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.

Данные прямые параллельны оси абсцисс  и проходят через точки (-1;0) и (-3;0) соответственно.

Прямая y=0 является осью ординат.

Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12

Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и  функцией х² +6х+12

S = \int\limits^{-1}_{-3} {(x^2+6x+12)} \, dx=\frac{x^3}{3}+3x^2+12x\left[\begin{array}{ccc}-1&\\-3\end{array}\right] = \frac{-1}{3}+3-12-(-\frac{27}{3}+27-36)= -\frac{1}{3}-9 +18 = 9-\frac{1}{3} = 8,67


Найти площадь фигуры, ограниченной линиями:у=х^2 +6х+12; х=-1; х=-3; у = 0​
4,6(92 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ