М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мариелла17
Мариелла17
13.11.2020 13:35 •  Алгебра

Найдите точку максимума функции y = (7-x)e^x+7

👇
Ответ:
Т9ygfch
Т9ygfch
13.11.2020
Решение
y = (7-x)e^x+7
Находим первую производную функции:
y' = (-x+7)*e^x - e^x
или
y' = (- x+6)*e^x
Приравниваем ее к нулю:
(-x+6)e^x = 0
e^x ≠ 0
6 - x = 0
x = 6
Вычисляем значения функции 
f(6) = 7 + e⁶
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = (-x+7)*e^x - 2*e^x
или
y'' = (-x+5)*e^x
Вычисляем:
y''(6) = - e⁶ < 0 - значит точка x = 6 точка максимума функции.
4,6(41 оценок)
Открыть все ответы
Ответ:
Eva27092006
Eva27092006
13.11.2020
6х^2-3x =0  вынесем общий множитель за скобки:
1)  3x(2x-1)=0  произведение двух множителей равно 0, если один из них или оба равны 0:
3х=0   или 2х-1=0
первый корень х=0
2х-1=0
2х=1
х=1/2   - второй корень.
2)25х^2=1   x^2=1/25     x=+- 5
3)4x^2+7x-2=0  вычислим дискриминант   D=b^2-4ac
D=49+32=81    x=(-7+-9)/8  x первое =-2, х второе       х=2/8=1/4
4)4x^2+20x+1=0
D=400-16=384   x=(-20+-VD):8   V - обозначение квадратного корня
5) 3x^2 + 2x + 1 =0   D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный
6) х^2 + 2,5x -3=0   D= 2,5^2-4*1*(-3)=18,25  x=( -2,5+- VD):2
7) x^4 -13x^2 +36=0  введем обозначение x^2= t, получим новое уравнение   t^2 -13t +36=0   D= 169+144=313   К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t  и найти   х.
4,5(10 оценок)
Ответ:
anyta006
anyta006
13.11.2020

ответ: утверждение доказано.

Объяснение:

Запишем многочлен в виде P(x)=a*x⁴+b*x³+c*x²+d*x+e. Из равенства P(1)=P(-1) следует равенство a+b+c+d+e=a-b+c-d+e, или b+d=-(b+d). Но это возможно только при b+d=0, откуда d=-b. Поэтому многочлен приобретает вид P(x)=a*x⁴+b*x³+c*x²-b*x+e. Из равенства P(2)=P(-2) следует равенство 16*a+8*b+4*c-2*b+e=16*a-8*b+4*c+2*b+e, или 16*a+6*b+4*c+e=16*a-6*b+4*c+e, или 6*b=-6*b. Но это возможно только при b=0, а тогда и d=-b=0. Теперь многочлен P(x) приобретает вид P(x)=a*x⁴+c*x²+e. Подставляя в него вместо x -x, получаем P(-x)=a*(-x)⁴+c*(-x)²+e=a*x⁴+c*x²+e=P(x). Утверждение доказано.

4,4(56 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ