Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
Чертим координатную плоскость отмечаем точку О, стрелками положительное направление: вправо и вверх, подписываем оси: вправо - ось х и вверх - ось у отмечаем единичные отрезки по каждой из осей в 1 клетку.
Отмечаем данную точку А(-3; 3) Чертим прямую х=-2, для этого отмечаем две точки, например В(-2; 2) и С(-2; 4) . Из точки А проводим перпендикуляр АН к прямой с угольника и продолжаем его дальше прямой; отмеряем на продолжении перпендикуляра расстояние, равное АН и ставим точку Д. Находим координаты точки Д. Получаем Д(-1; 3) - симметрична А относительно прямой х=-2
k=(20-5t)/3
2(20-5t)/3-9t^2/3=21/3
40-10t-9t^2-21=0
-9t^2-10t+19=0
9t^2+10t-19=0
D=100+36*19=28^2
t1=(-10-28)/18=-38/18=-(2 и 1/9)
t2=(-10+28)/18=1
k1=(20+5*38/18)/3=(360+190)/(18*3)=550/54=10 и 5/27
k2=(20-5)/3=5