Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
б) в точках пересечения с осью абсцисс, ордината равна 0, т.е. нужно решить уравнение
3х^2+6x-9=0
x^2+2x-3=0
По теореме Виета:
x1+x2=-2
x1*x2=-3
Следовательно, х1=-3, х2=1 - это и есть искомые координаты точек пересечения параболы с осью абсцисс.
в) Так как коэффициент при x^2 равен 3, что больше 0, значит ветви параболы направлены вверх. Следовательно, наименьшее значение функция достигает в точке, которая является вершиной параболы. Найдем вершину:
х=-в/2а=-6/2*3=-1.
Значит функция достигает своего минимума в точке х=-1 и равна:
у(-1)=3-6-9=-12.
г) Строится парабола по трем точкам, которые мы нашли выше: вершина (-1;-12) и точки пересечения с осью Ох (-3;0) и (1;0)