Пусть за х(часов)-первая выполнит,а х+5(часов) -выполнит вторая машина. 1/х-производительность первой машины в 1час,а 1/(х+5) -производительность второй.
а 1/6 ч общая производительность за 1час
Составим уравнение: 1/х+1/(х+5)=1/6 - приводим к общему знаменателю- 6*х*(х+5)6х+6х+30=х²+5х х²-7х-30=0
Дискриминант больше 0, уравнение имеет 2 корня: x₁=(13+7)/2=20/2=10; x₂=((-13+7)/2=-6/2=-3 - этот ответ не подходит,т.к. время не может быть отрицательное. ТОГДА
первая снегоуборочная машина в отдельности выполнить всю работы за 10часов
Переписывая уравнение в виде y=-(x-2)²+3=-x²+4x-1, замечаем, что график представляет собой квадратическую параболу. Так как коэффициент при x² равен -1<0, то ветви параболы направлены вниз. Первый член -(x-2)² обращается в 0 лишь при x=2, а пи других значениях х он отрицателен. Поэтому точка x=2 является вершиной параболы, в которой функция достигает своего наибольшего значения Ymax=y(2)=-2²+4*2-1=3. То есть координаты вершины есть (2;3). Чтобы найти координаты точек пересечения параболы с осью ОХ, надо решить уравнение x²-4x+1=0. Находим дискриминант D=(-4)²-4*1*1=12=(2√3)². Тогда x1=(4+2√3)/2=2+√3, x2=(4-2√3)/2=2-√3. Значит, (2+√3;0) и (2-√3;0) - координаты точек пересечения параболы с осью ОХ. Отсюда ясно, что если с>3, то прямая y=c не пересекает параболу, при c=3 прямая y=3 имеет с параболой одну общую точку - вершину параболы. А при c<3 прямая пересекает параболу в 2 точках. ответ: при c<3.
2)-11c^2+22c-11=-11(c^2-2+1)= -11(c-1)^2=-11(c-1)(c-1);
3)c^3a+8a=a(c^3+8)=a(c+2)(c^2-2c+4);
4)(y^2-1)^2-9= (y^2-1-3)(y^2-1+3)=(y^2-4)(y^2+2)=
=(y-2)(y+2)(y^2+2);
5) 3x^3-27x=0
3x(x^2-9)=0
3x(x-3)(x+3)=0
3x=0 => x=0
x-3=0 => x=3
x+3=0 =>x=-3
6) a^2+6a-40= (a+3)^2-49=(a+3)^2-7^2= (a+3-7)(a+3+7)=
=(a-4)(a+10).