Надеюсь, что это не факториал =) итак y=(x+2)/(x^2-9) 1) ООФ x^2-9=\=0 => x=\=+-3 других ограничений нет, значит, ООФ (-oo;-3) U (-3;3) U (3;+oo) 2) Область значений (-oo;+oo) 3) четность f(x)=(x+2)/(x^2-9) f(-x)=(-x+2)/(x^2-9) вывод: ни четная, ни нечетная 4) Прерывность. В принципе, мы уже нашли это в ООФ, но все же Функция прерывается в точках х=-3, х=3 5) Нули функции (x+2)/(x^2-9)=0 x=-2 - нуль функции 6) Асимптоты Вертикальные асимпоты в точках х=-3, х=3 Горизонтальных асимптот нет, ибо функция имеет значения на всей числовой прямой 7) Точки макс/мин, промежутки возрастания f'(x)=-(x^2+4x+9)/(x^2-9)^2 критические точки x^2+4x+9=0 корней нет значит, во всех точках функция убывает, но не забываем о прерываниях функция убывает на (-oo;-3) U (-3;3) U (3;+oo)
Если числа натуральные, то каждое следующее число больше предыдущего числа на единицу))) например: 2; 3; 4; 5;... в общем виде это можно записать так: n; (n+1); (n+2); (n+3);... 1) сумму трех последовательных натуральных чисел, меньшее из которых равно n: n + n+1 + n+2
четное число: 2n последовательные чётные натуральные числа: 2n; 2(n+1); 2(n+2); 2(n+3);... например: 8; 10; 12; 14;... (здесь n=4) например: 4; 6; 8;... (здесь n=2) 2) произведение трех последовательных чётных натуральных чисел, большее из которых равно 2k: 2(k-2) * 2(k-1) * 2k