Неполным квадратным называется такое уравнение,в котором хотя бы один из коэффициентов, кроме старшего( либо второй, либо свободный член) равен нулю. В нашем уравнении: b= -(a-6); c=(a^2-9). Старший коэффициент "a" = (a+3). Он не должен равняться нулю ( при а=-3), т.к. уравнение уже не будет квадратным. Поэтому,а=-3 нас не устраивает. 1). b=0 a-6=0 a=6 2)c=0 a^2-9=0 a^2=9 a1=-3 ( нам не подходит этот вариант) a2=3 При а =3 уравнение выглядит так: 6x^2+3x=0 При а=6 уравнение выглядит так:9x^2+27=0 ответ: a=3; a=6
Область определения данной функции можно найти опираясь на правило"Делить на о нельзя" или числитель дробного выражения не может принимать значения ,равные 0,то есть решаем уравнение х²-64=0 и тогда корни данного уравнения ,числа х=-8 и х=8 исключаем из ответа,то есть ответ в данном случае "Все числа,кроме 8 и-8". Очень часто область определения связано ещё и с определением квадратного корня,то есть выражение под квадратным корнем должен быть неотрицательным.В старших классах свойства логарифма может быть:там выражение под логарифмом должно быть положительным.
x^2 - 7x + 12 - x^2 + 36 - 7x = 0
- 7x + 12 + 36 - 7x = 0
- 14x + 48 = 0
- 14x = - 48
x = 24/7 = 3 целых 3/7