Это 2 прямые, первая с наклоном У:Х=0,5:1 сдвинута по оси У на 0,5 вниз (при Х=0 У=-0,5), а вторая с наклоном У:Х=1:1 сдвинута по оси У на 4 вниз (при Х=0 У=-4).
Точка пересечения имеет координаты (7;3), значит, корнем является Х=7.
2) Приводим систему к виду У=-1/3Х+2 и У=-1/3Х+3.
Это 2 прямые, первая с наклоном У:Х=1/3:1 сдвинута по оси У на 2 вверх (при Х=0 У=2), а вторая с наклоном У:Х=1/3:1 сдвинута по оси У на 3 вверх (при Х=0 У=3).
Имеем 2 параллельные прямые (наклон ведь одинаков), которые не пересекаются -> у системы нет решения.
cos2x=2sin2xcos2x
cos2x(1-2sin2x)=0, равносильно совокупности cos2x=0 и sin2x=0,5
2x=pi/2+pik 2x=(-1)^k*pi/6+pi*k
x=pi/4+pi*k/2 x=(-1)^k*pi/12+pi*k/2
как то так если что то непонятно обращайся)