М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
wenizi
wenizi
25.09.2021 14:36 •  Алгебра

Как найти площадь фигуры ограниченную параболой y=x^2 и прямой y=-x ?

👇
Ответ:
Mizuki1111
Mizuki1111
25.09.2021
x^2=-x\\
x^2+x=0\\
x(x+1)=0\\
x=0 \vee x=-1\\\\
\displaystyle\\
\int \limit_{-1}^0-x-x^2\, dx=\\
\left[-\dfrac{x^2}{2}-\dfrac{x^3}{3}\right]_{-1}^0=\\
-\dfrac{0^2}{2}-\dfrac{0^3}{3}-\left(-\dfrac{(-1)^2}{2}-\dfrac{(-1)^3}
{3}\right)=\\
-\left(-\dfrac{1}{2}+\dfrac{1}
{3}\right)=\\
\dfrac{1}{2}-\dfrac{1}
{3}=\\
\dfrac{3}{6}-\dfrac{2}
{6}=\\
\dfrac{1}{6}\approx0,17

4,7(28 оценок)
Открыть все ответы
Ответ:
1064738193747
1064738193747
25.09.2021

Четырехугольник PQRS вписан в окружность. Диагонали PR и QS перпендикулярны и пересекаются в точке M. Известно, что PS=13, QM=10, QR=26. Найти площадь четырехугольника PQRS.

углы PRQ и PSQ опираются на одну и ту же дугу, значит они равны. кроме того диагонали перпендикулярны, значит в частности углы PMS и RMQ равны

тогда треугольники PMS и RMQ подобны

k=QR/PS=2

отношение k=QM/PM=2

10/PM=2; PM=5

отношение k=RM/SM=2

находим RM по т. Пифагора

RM=корень(QR^2-QM^2)=корень(26^2-10^2)=24

24/SM=2; SM=12

тогда полные диагонали:

QS=QM+SM=10+12=22

PR=PM+RM=5+24=29

площадь четырехугольника равна полупроизведению их диагоналей на синус угла между ними

S=(1/2)*22*29*sin90=319

ответ: 319

4,5(50 оценок)
Ответ:
дадададад2
дадададад2
25.09.2021
Будем решать графически. На рисунке красным выделен график функции y = |x - 1| - 1.
Необходимо понять, при каких a прямая y = ax будет иметь с графиком ровно две точки пересечения.

Понятно, что одна точка пересечения будет всегда- это точка (0, 0).  Так как y = ax - прямая, проходящая через начало координат, то шансов получить еще ровно одну точку пересечения с графиком левее x = 1 шансов нет. Тогда должна быть точка пересечения правее x = 1.

Утверждаю, что такое может случиться, если и только если прямая будет проходить через закрашенную область, т.е. при -1 < a < 1.
При каких значениях параметра a уравнение ∣x−1∣=ax+1 имеет два решения?
4,8(52 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ