1. Нет например x=0, y=1 2.Из условия x0=-a=2, отсюда a=-2, y=x^2-4x+3, подставляем (3;0), получаем 0=9-12+3=0 значит ответ да 3. Ну по идее нужно обнулить икс, поэтому 2x-1>0, x-1<0, x-2<0, получаем x>1/2, x<1, x<2, то есть если a=2 у нас все числа от 1/2 до 1 являются корнями. ответ да 4.Рассмотрим x^3-ax-1=0. x=0 не является корнем ни при каком a, значит это уравнение равносильно исходному. Если у кубического многочлена 2 действительных корня, то обязательно один из них кратный (потому что комлексных корней у многочлена четное количество), отсюда x^3-ax-1=(x-p)^2(x-t). Раскрываем скобки приравниваем соответствующие коэффициенты друг другу получаем что , при этом корни p и t не совпадают, значит такое a подходит. ответ да
Чтобы понять решение линейных неравенств, рассмотрим пример: Как видно из решения, мы используем уже известные нам с 5ого класса навыки переноса x в левую часть. Это неравенство отличается от линейного уравнения только знаком >. Стоит также отметить, что ответ на решение записывается в неравенствах в виде промежутка. В нашем случае так: x∈(2; +∞). Круглая скобка показывает, что точка не включена в промежуток.
Рассмотрим другой пример: Как видно из решентя, мы меняем знак неравенства на противоположный при домножении обоих его частей на отрицательное число. ответ к неравенству запишем так: x∈[-1; +∞).
Чтобы закрепить материал попробуйте решить два неравенства, а потом сверить ответы: ответ: x∈[-2 4/9; +∞).
ответ: x∈(1 1003/4925; +∞).
Система неравенств решается так: Т. е. сначала решаем два неравенста как будто системы нет.
Теперь ищем общую часть. Она и будет являться ответом. У нас это: x∈(4, 7).
2)82.78=(80+2)(80-2)=6400-4=6396
3)42.38=(40+2)(40-2)=1600-4=1596
4)18.22=(20-2)(20+2)=400-4=396