6x² + 6/x² + 5x + 5/x - 38 = 0
6(x² + 1/x²) + 5(1/x + x) - 38 = 0
x ≠ 0
замена
1/x + x = t
(1/x + x)² = t²
1/x² + 2*1/x * x + x² = t²
1/x² + 2 + x² = t²
1/x² + x² = t² - 2
6(x² + 1/x²) + 5(1/x + x) - 38 = 0
6(t² - 2) + 5t - 38 = 0
6t² - 12 + 5t - 38 = 0
6t² + 5t - 50 = 0
D = 25 + 4*50*6 = 1225 = 35²
t12 = (-5 +- 35)/12 = 30/12 (5/2) - 40/12 (-10/3)
обратно к х
1. 1/x + x = 5/2
2x² - 5x + 2 = 0
D = 25 - 16 = 9 = 3²
x12 = (5 +- 3)/4 = 2 1/2
2. 1/x + x = -10/3
3x² + 10x + 3 = 0
D = 100 - 36 = 64 = 8²
x12 = (-10 +- 8)/6 = -3 -1/3
ответ x = {2,1/2,-3,-1/3}
вкратце
Заметим, что если пара (x₀, y₀) – решение системы, то и пара (x₀, -y₀) также является решением системы. Доказывается это подстановкой -y вместо y в уравнения:
В первом уравнении рассмотрим только первые две скобки:
После замены y на -y сумма не изменилась, значит, уравнение осталось тоже неизменным.
Во втором уравнении при подстановке -y минус «съедается» квадратом, поэтому уравнение также остаётся неизменным.
Исходя из этого единственным решение бывает тогда, когда y = -y, то есть y = 0. Получаем такую систему:
Рассмотрим функцию на промежутке -6 ≤ x ≤ 0. Вершина этой параболы находится в точке с абсциссой -3, ось симметрии ровно посередине заданного промежутка. Значит, при x = -3 парабола принимает ровно одно значение, а при всех остальных заданных x – ровно два. Отсюда единственность решения достигается:
1) x = -3 (единственное решение первого уравнения), причём , иначе не будет решений второго уравнения;
2) x = 0 (единственное решение второго уравнения).
Случай, когда первое уравнение имеет два решения, а второе – только одно из них, не достигается.
Случай 1 (x = -3):
При таком a - верно, значение подходит.
Случай 2: (x = 0):
.
Проверка значений параметра на посторонние решения:
При a = 2 из второго уравнения следует, что y = 0, тогда из первого следует, что , это уравнение также имеет единственное решение.
При a = -1 первое уравнение имеет вид . Рассмотрим функции
и
.
Нули производной:
Функция убывает при x ≤ 0 и возрастает при x ≥ 0. Значит, x = 0 – точка глобального минимума. Минимальное значение функции f(0) = 2. Значит, E(f) = [2; +∞).
g(x) – парабола. При заданных ограничениях E(g) = [-4; 2]. Значит, решение первого уравнения существует, если:
Вид второго уравнения при a = -1: . Пара решений (-6; 0) не является его решением. Пара (0; 0) является его решением. Значит, система имеет единственное решение.
ответ: -1; 2
-y= -2x+1
y= 2x-1
Точки для построения:
x=0 y=2*0-1= -1
x=1 y=2*1-1=1