М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
koooooooooo
koooooooooo
28.03.2021 05:06 •  Алгебра

Представьте трехчлен в виде квадрата двучлена: а) x^2+2xy+y^2 б)p^2-pq+q^2 в)a^2+12a+36 г)64 +16b+b^2 д)1-2z+z^2 е)n^2+4n+4

👇
Ответ:
поаввав
поаввав
28.03.2021
А). х²+2ху+у²=х²+ху+ху+у²=х(х+у)+у(х+у)=(х+у)(х+у)
в).а²+12а+36=а²+6а+6а+36=а(а+6)+6(а+6)=(а+6)(а+6)=(а+6)²
г). 64+16в+в²=64+8В+8В+в²=8(8+в)+в(8+в)=(8+в)(8+в)=(8+в)²
д).1-2z+z²=1-z-z+z²=(1-z)-z(1-z)=(1-z)(1-z)=(1-z)²
e).n²+4n+4=n²+2n+2n+4=n(n+2)+2(n+2)=(n+2)(n+2)=(n+2)²
4,7(21 оценок)
Открыть все ответы
Ответ:
kauymbek
kauymbek
28.03.2021

\\коэффициент при x^2 равен 1, значит ветки параболы направлены вверх

наименьшее значение находится либо на одном из концов даного отрезка, т.е. у в точке 0 или в т.2 или в вершине параболы т. х=-(a+4)/(2*1)=-a/2-2

 

y(0)=0^2+(a+4)*0+2a-3=2a-3

 

y(2)=2^2+(a+4)*2+2a-3=4+2a+8+2a-3=4a+9

 

y(-a/2-2)=2a-3-(a+4)^2/(4*1)=2a-3-(a^2+8a+16)/4=2a-3-a^2/4-2a-4=-a^2/4-7

 

если 2а-3=-4

2a=-4+3

2a=-1

a=-1/2=-0.5

y=x^2+(-0.5+4)х+2*(-0.5)-3=x^2+3.5x-4=(x+1.75)^2-7.0625

вершина параболы при а=-0.5 находится в точке х=-1.75, т.е. левее промежутка [0;2], а значит а=-0.5 удовлетворяет условию задачи

 

если 4a+9=-4

4a=-4-9

4a=-13

a=-13/4=-3.25

y=x^2+(-3.25+4)x+2*(-3.75)-4=x^2+0.75x-11.5=(x+0.375)^2-11.640625

вершина параболы при а=-3.25 находится в точке х=-0.375, т.е левее (не справа) промежутка [0;2], а значит а=-3.25 не удовлетворяет условию задачи (не будет достигатся минимум)

 

если -a^2/4-7=-4

-a^2/4=-4+7

-a^2/4=3

a^2=-12 - не иммет действительных решений

отвте: -0.5

4,5(35 оценок)
Ответ:
bratunivanovth9i
bratunivanovth9i
28.03.2021
1. b1 = 0,81 и q = -. Найти b6
     b6=0.81*(-q)^5
2.b1=6; q=2. Найти S(7)
    S(7)=6(2^7-1)/(2-1)=762
3. b1=-40; b2=-20; b3=-10. Найти сумму n членов бесконечной прогрессии.
    q=-20/-40=-10/-20=0.5
    S(n)=-40(0.5^n-1)/(0.5-1)
    S(n)=(80*0.5^n)-80
4. b2=1.2; b4=4.8.  Найти S(8)
    (b3)^2=1.2*4.8=5.76
     b3=√5.76=2.4
     q=4.8/2.4=2.4/1.2=2
     b1=1.2/2=0.6
     S(8)=0.6(2^8-1)/(2-1)
     S(8)=153
5. Представить в виде обыкновенной дроби бесконечную периодическую дробь.
a) 0.(153)
    k=3
    m=0
    a=153
    b=0
0+(153-0)/999=153/999=51/333=17/111
b) 0.3(2)
    k=1
    m=1
    a=32
    b=3
0+((32-3)/90)=29/90
4,6(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ