Для геометрической прогрессии со знаменателем Q и первым членом B₁ верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:
Sₙ = B₁(Qⁿ - 1)/(Q - 1) = B₁(Q * Qⁿ⁻¹ – 1) / (Q – 1) = 2*(512Q - 1) / (Q - 1) = 2046 ⇒
1024Q - 2 = 2046(Q - 1) ⇒ 1024Q - 2 = 2046Q - 2046 ⇒
2046Q - 1024Q = 2046 - 2 ⇒ 1022Q = 2044 ⇒ Q = 2044 : 1022, Q = 2.
Далее Qⁿ⁻¹ = 512 ⇒ 2ⁿ⁻¹ = 512 = 2⁹ ⇒ n - 1 = 9, откуда n = N = 10,
за N заново обозначили количество членов данной прогрессии
ответ: Q = 2, N = 10
Проверка: 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 = 2046
⇔ разделим одно ур-е на другое, получим 1=у/х
(2х+6у)^2=8х
тогда х = у и (2х+6х)∧2=8х или (8х)∧2 = 8х 1) х=0 2) х=1/8
y=0 y=1/8
проверка
1)х=0 у=0 2) х=1/8 у=1/8
(2·0+6·0)²=8·0 верно (2·1/8+6·1/8)²=8·1/8
(1/4+3/4)² =1 верно ответ: (0,0) (1/8, 1/8 )