Найдём уравнение прямой AB по точкам A(0, –2) и B(3, 2) с канонического уравнения прямой: y = 4x/3 – 2. Тогда прямая AB пересекает ось Ox в точке абсциссы 0 = 4x/3 – 2 ⇔ 6 = 4x ⇔ x = 3/2 и пусть эта точка будет M.
Аналогично получаем уравнение прямой BC y = –3x/4 + 17/4, которая пересекает Ox в x = 17/3, назовём эту точку N.
Тогда MN = 17/3 – 3/2 = 25/6 как основание прямоугольного треугольника BMN (угол B — прямой). Высота данного треугольника равна абсциссе точки B — 2. Таким образом, площадь треугольника равна 0.5(2)(25/6) = 25/6.
Найдём расстояние (а оно же и сторона квадрата) между точками A и B: AB = √(9 + 16) = 5, здесь же найдём площадь всего квадрата: 5² = 25. Тогда площадь пятиугольника MNCDA равна 25 – 25/6 = 125/6.
Наконец, найдём искомое отношение площадей треугольника BMN к пятиугольнику MNCDA: 25/6 : 125/6 = 25 : 125 = 1 : 5.
125x³-y³=(5x-y)(25x²+5xy+y²)
x^6-y^6)=(x³-y³)(x³+y³)=(x-y)(x²+xy+y²)(x+y)(x²-xy+y²(
а)(y+2)(y²-2y+4)
б)(a-1)(a²+a+1)
в)(2x+0,4y)(4x²-0,8xy+0,16y²)
г)(x²-4)(x^4+4x²+16)(x-2)(x+2)(x^4+4x+16)
а)x²-x²+9=3x
3x=9
x=3
б)4x=9
x=2,25