Для вычисления пары чисел которые будут решением этого уравнения мы применим один из решения системы уравнений:
5x - 3y = 0;
3y + 4x = 27.
Осмотрев оба уравнения системы мы лицезреем, что перед переменной y стоят в обеих уравнениях обоюдно противоположные коэффициенты.
Сложим почленно два уравнения системы и получим:
5x + 4x = 0 + 27;
y = (27 - 4x)/3.
Так же из второго уравнения мы выразили переменную y через x.
Решаем 1-ое уравнение системы:
9x = 27;
x = 27 : 9;
x = 3.
Система уравнений:
x = 3;
y = (27 - 4 * 3)/3 = (27 - 12)/3 = 15/3 = 5.
Объяснение:
В решении.
Объяснение:
Применить формулы сокращённого умножения:
1)(5х+3у)²=25х²+30ху+9у²;
2)(4а-7в)²=16а²-56ав+49в²;
3)81х²-121у²=(9х-11у)(9х+11у);
4)(10х-3у)(10х+3у)=100х²-9у²;
5)(2х+3у)³=
6)(5х-4у)³=
7)27х³+1000у³=
8)64а³-343в³=
Вынести общий множитель за скобки:
1)3х+3у=3(х+у);
2)10х-15у=5(2х-3у);
3)4х(3х+2у)+5(3х+2у)=(3х+2у)(4х+5);
Разложить на множители многочлен:
1)ах+ау+5х+5у=(ах+ау)+(5х+5у)=а(х+у)+5(х+у)=(х+у)(а+5);
2)вх+в+10х+10=(вх+в)+(10х+10)=в(х+1)+10(х+1)=(х+1)(в+10);
3)4х-4у-7сх+7ус=(4х-4у)-(7сх-7ус)=4(х-у)-7с(х-у)=(х-у)(4-7с);
4)х²+хв-7х-7в=(х²-7х)+(хв-7в)=х(х-7)+в(х-7)=(х-7)(х+в);
5)х³-12+6х²-2х=(х³+6х²)-(12+2х)=х²(х+6)-2(х+6)=(х+6)(х²-2).
2/3х = 3 + 5
2/3х = 8
х = 8 : ( 2/3 )
х = 4 • 3
х = 12