а)10(корень из x^2-x-1)-3/(дробь)(Корень из x^2-x-1)корень под дробью=7
пусть корень из (х^2-x-1)=а, тогда уравнениє набуває вигляду
10а-3/а=7 домножити ліву і праву частину на а
10а^2-3=7а - перенесемо а в ліву частину, числа в праву
10а^2-7а=3 - зведемо ашики
10а^2-7а-3=0
a=-0.3 - не відповідає умові
а=1 - підставимо корень из (х^2-x-1) вместо а
корень из (х^2-x-1) =1, піднесемо до квадрату ліву і праву частину
х^2-x-1 =1 - перенесемо 1 в ліву частину
х^2-x-2 =0
х=2
х=-1 - за теоремою вієта
б)2(корень из x^2-9x+23)-5=3/(дробь)корень из (x^2-9x+23) корень под дробью
пусть (корень из x^2-9x+23)=а, тогда рівняння набуває вигляду
2а-5=3/а - домножимо все на а
2а^2-5a=3 - перенесемо 3 в ліву частину
2а^2-5a-3=0
а=-1/2
а=3 - за теоремою Вієта
оскільки корінь числа не може бути відємним, то -1/2 не відповідає умові. Єдиною відповіддю є 3. Підставимо корень из x^2-9x+23 вместо а.
корень из x^2-9x+23=3 - піднесемо до квадрата обидві частини рівняння
x^2-9x+23=9 - перенесемо 9 в ліву частину
x^2-9x+14=0
х=7
х=2 - за теоремою вієта.
1. Область допустимых значений x^2-x-1>0
пусть sqrt(x^2-x-1)=t, t>0
10t-3/t=7
10t^2-7t-3=0
D=169
t1=1
t2=-0,3 не удовл. условию(t>0)
sqrt(x^2-x-1)=1 возводим в квадрат
x^2-x-1=1
x^2-x-2=0
D=9
x1=2
x2=-1
Проверяем ОДЗ х=2 4-2-1=1>0
x=-1 1+1-1=1>0
ответ -1;2
2.принцип такой же
ОДЗ x^2-9x+23>0 данное неравенство справедливо при любом значении х(D<0)
значит и проверку по ОДЗ делать не надо
Пусть sqrt(x^2-9x+23)=t, t>0
2t^2-5t-3=0D=49
t1=3
t2=-0,5 не удовлетворяет(t>0)
sqrt(x^2-9x+23)=3
x^2-9x+23=9
x^2-9x+14=0
D=25
x1=7
x2=2
{x^2-xy=12 ⇔ x^2-x(2x-7)=12 ⇔ - x^2+7x-12=0 ⇔ x^2-7x+12=0
x1=3, x2=4
(решаем или по теореме Виета, или по "дискриминанту").
Т.к. y=2x-7,то x1=3, y1= -1, x2=4, y2= 1.
Проверка.
x1=3, y1= -1, x2=4, y2= 1.
2(3)-(-1)=7 ВЕРНО, 2(4)-(1)=7 ВЕРНО,
3^2-3(-1)=y=12 ВЕРНО 4^2-4(1)=y=12 ВЕРНО
ОТВЕТ: x1=3, y1= -1,
x2=4, y2= 1.
2)Дана система линейных уравнений:
{4x-3y=-1
{2x+5y=6
Решите эту систему:
подстановки.
{4x-3y=-1
{2x+5y=6 ⇒2x=6-5y,
подставляем в первое ур-е 4x-3y= -1: 2(2x)-3y= -1 2(6-5y)-3y=-1 ⇒
12-10y-3y= -1 ⇒ -13y = -13 ⇒y=1, тогда x= (6-5)/2=1/2
x=1/2, y=1
Проверка.
{4(1/2)-3(1)=-1
{2(1/2)+5(1)=6 верно.
сложения
{4x-3y=-1
{2x+5y=6
умножим обе части второго ур-я на (-2), получим {4x-3y=-1
{-4x-10y=-12
Складываем уравнения, получим: -13y=-13, ⇒y=1.
Находим x, подставляя y=1 в какое-нибудь ур-е системы, например во второе: 2x+5(1)=6 ⇒2x=6-5 ⇒x=1/2.
x=1/2, y=1
Проверку уже выполнили (см. выше).
ответ: x=1/2, y=1