М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lexa3678
lexa3678
31.01.2022 21:41 •  Алгебра

А) сравните числа а и с, если а> b и c

👇
Ответ:
Despair1704
Despair1704
31.01.2022
A) a>c б) а+4<b+4; 8a<8b; -14a>-14b
4,4(10 оценок)
Открыть все ответы
Ответ:
romankulikov20
romankulikov20
31.01.2022
y=(x+2)^3/(x-1)^2

1)Найти область определения функции
выражений с корнем четной степени нет
знаменатель не равен нулю, значит х-1 не равен 0 значит х - не равен 1
область определения х є (-беск;1) U (1:+беск)

2)Чётность, нечётность функции
y(x)=(x+2)^3/(x-1)^2
y(-x)=(-x+2)^3/(-x-1)^2 не равно y(x)
y(-x)=(-x+2)^3/(-x-1)^2 не равно -y(x)
y(x)=(x+2)^3/(x-1)^2 не является ни четной ни нечетной

3)Непрерывность
y(x)=(x+2)^3/(x-1)^2 имеет точку разрыва при х=1

4)Критические точки
y(x)=(x+2)^3/(x-1)^2
y'(x)={3*(x+2)^2*(x-1)^2-(x+2)^3*2*(x-1)}/(x-1)^4 =
={3*(x-1)-2*(x+2)}*(x+2)^2/(x-1)^3=
=(3x-3-2x-4)*(x+2)^2/(x-1)^3=
=(x-7)*(x+2)^2/(x-1)^3

y'(x)=0 при
(x-7)*(x+2)^2/(x-1)^3=0
х=-2 x=1 х=7 - критические точки

5)Интервалы возрастания и убывания функции
 в точках x=1 и х = 7 производная меняет знак

интервалы возрастания
х є (7; +беск) U (-2;1) U (-беск ;-2)
интервалы убывания
х є (1;7)

6)Экстремумы функции
 в точках x=1 и х = 7 производная меняет знак
x=1 - локальный максимум
х = 7- локальный минимум

7)Критические точки второго рода
x=1  - критические точки 2 рода

8)Интервалы выпуклости и вогнутости функции
надо считать вторую производную - лень

9)Точки перегиба
то же самое

10)Асимптоты
вертикальная асимптота у=1
наклонная асимптота ищем в виде
у=ах+в
а = lim(y)/x=1
b=lim(y-a*x)=8

асимптота у = х+8

11)Построить график
график во вложении

Исследование функции с произвоной y=(x+2)^3/(x-1)^2 1)найти область определения функции 2)чётность,
4,7(50 оценок)
Ответ:
daramir02
daramir02
31.01.2022
\frac{6}{(2x-1)(2x+1)} + \frac{3}{2x+1} - \frac{2}{2x-1} -1=0
\frac{6+3(2x-1)-2(2x+1)-(4x^2-1)}{(2x-1)(2x+1)}=0
\left \{ {{6+6x-3-4x-2-4x^2+1=0} \atop {x \neq - \frac{1}{2},and,x \neq \frac{1}{2} }} \right. ;&#10; \left \{ {{-4x^2+2x+2=0} \atop {x \neq - \frac{1}{2},and,x \neq \frac{1}{2} }} \right. ;&#10; \left \{ {{2x^2-x-1=0} \atop {x \neq - \frac{1}{2},and,x \neq \frac{1}{2} }} \right. ;
\left \{ {{2x^2-2x+x-1=0} \atop {x \neq - \frac{1}{2},and,x \neq \frac{1}{2} }} \right. ;&#10; \left \{ {{2x*(x-1)+1*(x-1)=0} \atop {x \neq - \frac{1}{2},and,x \neq \frac{1}{2} }} \right. ;&#10; \left \{ {{(x-1)(2x+1)=0} \atop {x \neq - \frac{1}{2},and,x \neq \frac{1}{2} }} \right. ;
\left \{ {{x=1,or,x= -\frac{1}{2} } \atop {x \neq - \frac{1}{2},and,x \neq \frac{1}{2} }} \right. ;
x=1

ответ: 1
--------------------------------------
5x^4-12x^3+11x^2-12x+5=0
если коэффициенты действительно такие, то это уравнение решается лишь за формулами Кардано (на подобие формул корней квадратного уравнения, только для уравнения 4-го степени).
 И тут не применишь и метод неопределенных коэффициентов (ax^2+bx+c)(dx^2+ex+f)=5x^4-12x^3+11x^2-12x+5, так как коэффициенты b,c,e,f - иррациональны.
Формулы Кардано в обычном курсе алгебры в школе не изучают, в углубленном курсе кажется так же не изучают.
Прикрепляю скрин

\sqrt{3x+1}- \sqrt{x-1}=2
\sqrt{3x+1}= \sqrt{x-1}+2x \geq 1
3x+1= x-1+4\sqrt{x-1}+4x \geq 1
x-1=2\sqrt{x-1}x \geq 1
( \sqrt{x-1}) ^2-2\sqrt{x-1}=0x \geq 1
\sqrt{x-1}( \sqrt{x-1} -2)=0x \geq 1

два случая:
1) \sqrt{x-1}=0,if,x \geq 1
x=1

2) \sqrt{x-1} =2,if,x \geq 1
x=5,if,x \geq 1
x=5

ответ: 1 и 5
------------------------------
4x^2-ax+a-3=0
4x^2-ax+a-3 - парабола ветками вверх, нам нужен случай, когда вершина параболы лежит на оси ОХ, т.е. когда парабола пересекает эту ось в одной точке.
И это будет тогда и только тогда, когда дискриминант обращается в нуль:
D=(-a)^2-4*4(a+3)=a^2-16a+48=a^2-4a-12a+48=
D=a(a-4)-12(a-4)=(a-12)(a-4)
Получили, что это случается если a=4,or,a=12

ответ: 4; 12.
5x^4-12x^3+11x^2-12x+5=0 при каких значениях параметра а уравнение 4x^2-ax+a-3=0 имеет только один к
4,5(98 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ