Нашей целью является нахождение точки, являющейся пересечением серединного перпендикуляра к отрезку АВ и оси Ох. А(-1;5) и В(7;-3) 1) Находим координату середины отрезка АВ:
2) Находим направленный вектор прямой АВ: s={7-(-1);-3-5} s={8;-8} 3) Находим нормаль к прямой АВ: n={-(-8);8} n={8;8} Сократим координаты на число 8, получим координаты нормали: n={1;1} 4) Составим уравнение серединного перпендикуляра к прямой АВ: (x-3)/1 = (y-1)/1 x-3=y-1 x-y-2=0 5) По условию, искомая точка лежит на оси Ох, значит ордината этой токи равна нулю. Ищем абсциссу: х-0-2=0 х=2 Итак, точка (2;0) - искомая
3(5+a)=-6-4a
15+3a=-6-4a
3a+4a=-6-15
7a=-21
a=-3
Проверка:
x(5+(-3))=-6-4*(-3)
x(5-3)=-6+12
5x-3x=6
2x=6
x=3
ответ: уравнение имеет корень, равный 3, если a=-3