М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
НикаНетУбежал
НикаНетУбежал
08.06.2022 06:43 •  Алгебра

Докажите, что а) (а-b)^2=(b-a)^2 б) (х+у)^2=(-х-у)^2

👇
Ответ:
alapova1
alapova1
08.06.2022
А) там поменяли b и a
б) там идёт минус
4,6(85 оценок)
Ответ:
valeriy345
valeriy345
08.06.2022
А) a²-2ab+b²=b²-2ab+a²
     a²-a²-2ab+2ab+b²-b²=0
     0=0
б) х²+2ху+у²=х²+2ху+у²
(-х-у)²=(х+у)² ,т.к. минус в квадрате дает плюс
4,5(34 оценок)
Открыть все ответы
Ответ:
girrrrl
girrrrl
08.06.2022

x ∈ [⅔; 6)

Объяснение:

\sqrt{x+3} + \sqrt{3x-2}

ОДЗ:

\left \{ {{x+3\geq 0,} \atop {3x-2\geq 0}} \right. \left \{ {{x\geq -3} \atop {x\geq2/3 }} \right.    x ∈ [⅔; +∞)

Возводим в квадрат обе части уравнения:

(√(x + 3) + √(3x - 2))² < 7²

Решаем:

x + 3 + 2√((x + 3)(3x-2)) + 3x - 2 < 49

4x + 1 + 2√(3x² + 7x - 6) < 49

2√(3x² + 7x - 6) < 48 - 4х  | :2

√(3x² + 7x - 6) < 24 - 2x

Имеем два случая:

Если 1) 24 - 2x < 0, то нет корней;

2) 24 - 2x ≥ 0

(√(3x² + 7x - 6))² < (24 - 2x)² при 24 - 2x ≥ 0

ОДЗ: 3x² + 7x - 6 ≥ 0; (x+3)*(3x - 2) ≥ 0

  +      -        +

------•------•------>

     -3     ⅔

ОДЗ: x ∈ (-∞; -3] ∪ [⅔; +∞)

Решаем далее:

3x² + 7x - 6 < 4x² - 96x + 576

-x² + 103x - 582 < 0

(x - 6)*(x - 97) > 0   *корни уравнения x² - 103x + 582 = 0 были найдены по т-ме Виета

+         -        +

------о------о------>

     6        97

х ∈ (-∞; 6) ∪ (97; +∞)

Так как мы взяли 24 - 2х ≥ 0, то: 24 ≥ 2x; x ≤ 12.

х ∈ (-∞; 6) ∪ (97; +∞) при x ≤ 12, то у нас решение первого нер-ва: х ∈ (-∞; 6).

В итоге, решением заданного по условию неравенства является решение 1-го полученного неравенства и ограничения начального неравенства:

х ∈ (-∞; 6) при x ∈ [⅔; +∞)

Пересечением данных неравенств является интервал: x ∈ [⅔; 6). Это и будет ответом.

4,4(26 оценок)
Ответ:
русел222033
русел222033
08.06.2022

сумма корней квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену .

в случае квадратного уравнения формулы виета имеют вид:

значимость теоремы виета заключается в том, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные многочлены от двух переменных и . теорема виета позволяет угадывать целые корни квадратного трехчлена.

. используя теорему виета, найти корни уравнения

решение. согласно теореме виета, имеем, что

подбираем значения и , которые удовлетворяют этим равенствам. легко видеть, что им удовлетворяют значения

и

ответ. корни уравнения ,

обратная теорема виета

если числа и удовлетворяют соотношениям , то они удовлетворяют квадратному уравнению , то есть являются его корнями.

. зная, что числа и - корни некоторого квадратного уравнения, составить само это уравнение.

решение. пусть искомое квадратное уравнение имеет вид:

тогда, согласно теореме виета, его коэффициенты связаны с корнями следующими соотношениями:

тогда

то есть искомое уравнение

ответ.

общая формулировка теоремы виета

если - корни многочлена (каждый корень взят соответствующее его кратности число раз), то коэффициенты выражаются в виде симметрических многочленов от корней, а именно:

иначе говоря, произведение равно сумме всех возможных произведений из корней.

4,6(29 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ