Пусть двухрублевых монет х штук, а пятирублевых у штук, тогда по условию задачи 2х+5у=28. Решим это уравнение в целых числах. 2х=28-5у. В левой части чётное число, так как оно кратно 2, значит, чтобы х было целым числом, нужно, чтобы и в правой части было чётное число. Правая часть - это разность четного числа 28 и неизвестного произведения 5у. Чтобы всё выражение в правой части было четным числом, нужно, чтобы 5у было четным, так как разность двух чётных чисел есть чётное число. 5у может быть четным только если у будет четным, так как произведение чётного и нечётного есть чётное число. Получим у может быть равным либо 2, либо 4, равным 6 и более у быть не может, иначе разность 28-5у становится отрицательной. Тогда при у=2: 2х=28-5*2 => 2х=18 => х=9; при у=4: 2х=28-5*4 => 2х=8 => х=4. Значит, двухрублевых монет либо 9, либо 4 штуки. ответ: 9 или 4.
30 : 5 = 6 ч . - время , которое он затратил
6-1 = 5 ч. - затратила лодка на путь туда-обратно
Лодка:
Собственная скорость - х км/ч
По течению:
Скорость - (х+5) км/ч
Расстояние - 60 км
Время - 60 /(х+5) ч.
Против течения :
Скорость - (х-5) км/ч
Расстояние - 60 км
Время - 60/(х-5) ч.
Уравнение.
60/(х+5) + 60/(х-5) = 5
(60(х-5) +60(х+5) ) / (х²-25) = 5 * (х²-25)
60х - 300 +60х +300 = 5(х²-25)
120 х = 5х²-125
120х -5х² + 125 =0 ÷(- 5)
х²-24х- 25=0
D= (-24)² - 4 *(-25) = 576+100=676
D > 0 - два корня
х₁= (24-√676) /2 = (24-26)/2 = -2/2=-1 - не удовл. условию задачи
х₂= (24+26 )/2= 50/2 =25 - собственная скорость лодки
ответ: 25 км/ч скорость лодки в неподвижной воде.