B^2 + 25 + 10 = b^2 + 35 Это выражение никогда не может быть отрицательным, потому что число взятое в квадрат всегда будет принимать положительное значение,и между b^2 и 35 стоит знак плюс.
1.Чтобы убедиться в том, что число является корнем уравнения нужно подставить его вместо Х и если получается верное равенство - то это корень уравнения. Если же нет, то этот корень не подходит. Подставляем -2 в первое уравнение. получиться -2*7+4=-10. -14+4=-10 -10=-10 следовательно, число -2 является корнем уравнения.
Подставим это же число во второе уравнение: -3*(-2)-5=2*(-2)+5 6-5=5-4 1=1 следовательно, число -2 является корнем и второго уравнения.
2.Решаем уравнения. сначала перенесем все иксы в левую часть и всё остальное - в правую -5х+1=3х+2 получим: -8х=1 х=1/-8 сл-но х=-1/8=-0.125 второе уравнение: 8х-6=3х+2 снова перенесем иксы в левую часть: 8х-3х=6+2 5х=8 х=8/5= 1 целая и 3/5 переведем в десятичную дробь: 1 3/5 =1 6/10=1,6. вот и всё!
Решение: 1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R) 2) Функция ни четна, ни нечетна 3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3. Точки пересечения с осью OY в y = 0 4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0. 5) Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
Это выражение никогда не может быть отрицательным, потому что
число взятое в квадрат всегда будет принимать положительное значение,и между b^2 и 35 стоит знак плюс.