Пусть х л воды в мин пропускает вторая труба, тогда (х-2) л/мин пропускная первой трубы. Так вторая труба свой объем заполняет быстрее на 4 мин быстрее, чем первая труба заполняет свой объём, то по времени и составляем уравнение по условию задачи: 136/(х-2) - 130/х = 4 приводим к общему знаменателю х(х-2) и отбрасываем его, заметив, что х≠0 и х≠2, получаем: 136х-130(х-2)=4х(х-2) 136х-130х+260-4х2+8х=0 -4х2 +14х +260 =0 |:(-2) 2х2 -7х -130 =0 Д=19+8*130=1089 х(1)=(7+33) / 4 =10 (л/мин) воды пропускает через себя вторая труба. х(2)= (7-33) / 4 = -6,5 <0 не подходит под условие задачи
x² + x² - 7x - 6x + 15 <0
2x² - 13x + 15 < 0
2x² - 13x + 15 = 0
D= 169 - 120 = 49
x₁ = 13 + 7 / 4 = 5
х₂= 13 - 7 / 4 = 1,5
2(х-5)(х-1,5) < 0
ответ: (1,5;5).