х² -2х = х+2-х²
х² - 2х - х +х² - 2 = 0
2х² - 3х - 2 =0
D=(-3)² - 4*2*(-2) = 9+16 = 25 = 5²
x1= (3 - 5)/(2*2) = -2/4 =-0.5
x2 =(3+5)/4 = 8/4 = 2
2) 3х² -8х + 13 = (х-5)²
3х² - 8х + 13 = х² - 10х + 25
3х² - 8х + 13 - х² + 10х - 25 =0
2х² +2х -12 = 0 |÷2
x²+x - 6 =0
D=1² - 4*1*(-6) = 1 +24 = 25 = 5²
x1= (-1-5)/ (2*1) = -6/2 =-3
x2= (-1+5)/2 = 4/2=2
3) (x+1)²=(x-2)²
x²+2x+1 = x² -4x +4
x² +2x + 1 - x² +4x - 4 =0
6x - 3 =0
6x= 3
x=3/6 = 1/2
x=0.5
4)(x-10)² = (1-x)²
x²-20x +100 = 1 -2x+x²
x² -20x +100 -1 +2x -x²=0
18x + 99 =0
x=99/18 = 11/2
x=5.5
( 2a + 4b) - b( a + 2b) = 2( a + 2b) - b( a + 2b) = ( a + 2b)(2 - b)
x^2 - 64y^2= ( x - 8y)(x + 8y)
2) ( 7m -n)(7m + n) / 3mn( n - 7m) = - (7m + n) / 3mn = - 7m -n / 3mn
(9x - 4)(9x + 4) / ( 4 + 9x)^2 = (9x - 4)(9x + 4) / (4 + 9x)(4 + 9x) =(9x - 4)/(9x+4)
3) ( x - 4)^2 - 25 = 0
( x - 4 - 5)(x - 4 + 5) = 0
( x - 9)(x + 1) = 0
x - 9= 0
x = 9
x + 1 =0
x = - 1
4) x^2 - 12x - 45 = ( x - 15)(x + 3)
x^2 - 12x - 45 = x^2 + 3x - 15x - 45
x^2 - 12x - 45 = x^2 - 12x - 45 - верно,тождество доказано
5) (99 - 61)(99^2 + 99*61 + 61^2) / 38 + 99*61 = 38*19561 / 6077=
= 122,3166