М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Karon1337
Karon1337
06.04.2020 00:57 •  Алгебра

Простейшие показательные логорифмические уравнения: а)4^x-1=32 б)27^x=1/3

👇
Ответ:
Шнуров
Шнуров
06.04.2020

A) 4^(x-1) = 32

2^(2(x-1)) = 32

2^(2(x-1)) = 2^5

2(x-1) = 5

2x-2 = 5

2x = 7

x = 3.5

 

Б)27^x = 1/3

3^3x = 3^(-1)

3x = -1

x = -1/3

4,5(28 оценок)
Ответ:
grishchenkova0
grishchenkova0
06.04.2020

4^x =33

x = log_4(33)

 

4 ^(x-1) = 2^5

2x -2 =5

2x = 7

x =3.5

 

27^x  = 3^-1

3^3x = 3^ -1

3x = -1

x = -1/3

4,4(22 оценок)
Открыть все ответы
Ответ:
39OVERLORD39
39OVERLORD39
06.04.2020
Обозначим учеников точками на плоскости, а дружеские связи отрезками, соединяющими эти точки. Пусть в классе n учеников. Т.к. из каждой точки выходит ровно 3 отрезка и каждый отрезок связывает 2 точки, то количество отрезков равно 3n/2.
1) Если n=25, то 3*25/2 не является целым числом, поэтому в классе не могло быть 25 учеников.
2) Если n=18, то 3*18/2=27. Т.е. должно быть 27 отрезков. Но это еще не доказывает, что 18 точек можно связать 27 отрезками так, что из каждой точки выходит ровно 3 отрезка, поэтому предъявим такое расположение. Поместим точки в вершинах выпуклого 18 угольника, пронумеруем их по порядку от 1 до 18, и нарисуем стороны этого 18-угольника. В результате, каждая его вершина будет связана с двумя соседними,  т.е. из каждой вершины выходит ровно 2 отрезка. Осталось соединить вершины 9 диагоналями так, чтобы из каждой вершины выходила ровно одна диагональ. Т.к. количество точек четное, то это возможно: например соединяем точки так: [1,10], [2,11], [3,12],..., [9,18].  Видим, что это действительно дает диагонали, т.к. в каждой паре разница между номерами не равна 1. При этом каждая вершина участвует по одному разу. Понятно, что это работает и для любого четного n.
4,8(4 оценок)
Ответ:
Обозначим учеников точками на плоскости, а дружеские связи отрезками, соединяющими эти точки. Пусть в классе n учеников. Т.к. из каждой точки выходит ровно 3 отрезка и каждый отрезок связывает 2 точки, то количество отрезков равно 3n/2.
1) Если n=25, то 3*25/2 не является целым числом, поэтому в классе не могло быть 25 учеников.
2) Если n=18, то 3*18/2=27. Т.е. должно быть 27 отрезков. Но это еще не доказывает, что 18 точек можно связать 27 отрезками так, что из каждой точки выходит ровно 3 отрезка, поэтому предъявим такое расположение. Поместим точки в вершинах выпуклого 18 угольника, пронумеруем их по порядку от 1 до 18, и нарисуем стороны этого 18-угольника. В результате, каждая его вершина будет связана с двумя соседними,  т.е. из каждой вершины выходит ровно 2 отрезка. Осталось соединить вершины 9 диагоналями так, чтобы из каждой вершины выходила ровно одна диагональ. Т.к. количество точек четное, то это возможно: например соединяем точки так: [1,10], [2,11], [3,12],..., [9,18].  Видим, что это действительно дает диагонали, т.к. в каждой паре разница между номерами не равна 1. При этом каждая вершина участвует по одному разу. Понятно, что это работает и для любого четного n.
4,6(16 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ