1. Сначала вычисляем общее количество возможных вариантов события. Ты можешь взять 1 из любых 41+59=100 карандашей.
А — событие, при котором ты вытягиваешь зелёный карандаш. Вариантов исходов событий — 41.
Тогда P(A)=41/100 = 0,41
2. Общее количество возможных вариантов события расстановки шаров вычисляем как 5!=1×2×3×4×5=120.
B — событие, при котором составляется верная комбинация. Вариантов исходов событий — 1.
Тогда P(B)=1/120
3. Общее число возможных вариантов события вычисляем как 5!/2! = (2!×3×4×5)/2! = 60.
С — событие, при котором число кратно 5. Число кратно 5 тогда, когда оно заканчивается единицей. Число таких событий вычисляем как 4!/2! = (2!×3×4)/2! = 12.
Тогда P(C)=12/60=1/5=0,2.
4. Вероятность того, что попадётся тетрадь в клетку в первой стопке — 2/3. Вероятность того, что попадётся тетрадь в клетку во второй стопке — 2/5.
P(F) — событие, при котором из двух пачек вытягивают тетрадь в клетку. Подсчитаем число исходов, благоприятствующих этому событию (среди 3 тетрадей 1 будет в клетку): 1 тетрадь в клетку можно взять из 4 тетрадей в клетку С при этом остальные 2 тетради должны быть в линейку; взять же 2 тетради в линейку из 6 тетрадей в линейку можно С Следовательно, число благоприятствующих исходов равно С1/4 С2/6:
Р(F)=С1/4*С2/6:С3/10= 20/72=5/18.
5. Общее число возможных вариантов событий равно 36.
D — событие, при котором сумма очков делится на 9. Таких вариантов, благоприятствующих событию, — 4 (3+6; 6+9; 5+4; 4+5).
Тогда P(D)=4/36=1/9.
Насчёт четвёртого я не уверен.
2-2cos²x-6cosx+6=0
cos²x+3cosx-4=0
cosx=a
a²+3a-4=0
a1+a2=-3 U a1*a2=-4
a1=-4⇒cosx=-4<-1 нет решения
a2=1⇒cosx=1⇒x=2πk,k∈z
2
Разделим на cos^2x
1-2tgx-3tg²x=0
tgx=a
3a²+2a-1=0
D=4+12=16
a1=(-2-4)/6=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
a2=(-2+4)/6=1/3⇒tgx=1/3⇒x=arctg1/3+πn,n∈z
3
sin(4x+3x)=-1
sin7x=-1
7x=-π/2+2πk,k∈z
x=-π/14+2πk/7,k∈z
4
Разделим на cos^2x
7tg²x-8tgx+1=0
tgx=a
7a²-8a+1=0
D=64-28=36
a1=(8-6)/14=1/7⇒tgx=1/7⇒x=arctg1/7+πk,k∈z
a2=(8+6)/14=1⇒tgx=1⇒x=π/4+πn,n∈z
5
8sin(x/2)cos(x/2)-3(1+cosx)=0
8sin(x/2)cos(x/2)-3*2cos²(x/2)=0
2cos(x/2)*(4sin(x/2)-3cos(x/2))=0
cos(x/2)=0⇒x/2=π/2+πn,n∈z⇒x=π+2πn,n∈z
4sin(x/2)-3cos(x/2)=0/cos(x/2)
4tg(x/2)-3=0
tg(x/2)=3/4
x/2=arctg0,75+πk,k∈z
x=2arctg0,75+2πk,k∈z