Дано:
АВСД - ромб
уг В = уг Д = 60*
АВ=ВС=СД=ДА= 20
АН высота
Найти:
ВН и НС ?
1) диагонали ромба пересекаются в т О. ВО=ОД. ВО - биссектриса уг В, след уг АВО= уг СВО = 60:2=30*. ( по свойству диаг ромба)
2) Рассм треуг АВО ( уг О=90*) В нем АВ=20, уг АВО = 30* След АО=10 ( по св-ву катета лежащего против угла в 30*).
3) АС= 2АО ( по св-ву ромба) АС=20
4) Рассм треуг ВАС - р/б ( АВ=АС=20) След АН - медиана ( по св-ву р/б треуг). Следовательно, ВН=НС=ВС/2. ВН=НС=20/2=10
ответ : длины отрезков на кот делит сторону ромба высота, опущенная из вершины тупого угла равны 10.
Дано:
АВСД - ромб
уг В = уг Д = 60*
АВ=ВС=СД=ДА= 20
АН высота
Найти:
ВН и НС ?
1) диагонали ромба пересекаются в т О. ВО=ОД. ВО - биссектриса уг В, след уг АВО= уг СВО = 60:2=30*. ( по свойству диаг ромба)
2) Рассм треуг АВО ( уг О=90*) В нем АВ=20, уг АВО = 30* След АО=10 ( по св-ву катета лежащего против угла в 30*).
3) АС= 2АО ( по св-ву ромба) АС=20
4) Рассм треуг ВАС - р/б ( АВ=АС=20) След АН - медиана ( по св-ву р/б треуг). Следовательно, ВН=НС=ВС/2. ВН=НС=20/2=10
ответ : длины отрезков на кот делит сторону ромба высота, опущенная из вершины тупого угла равны 10.
2. 3х²у⁴-12ху⁵=3ху⁴(х-4у)
3. 4(х-у)+3а(х-у)=(х-у)(4+3а)
4. 12х-3у-36ху-1=12х+1-2-3у-36ху=12х+1-3у(1+12х)-2=(12х+1)(1-3у)-2