a) (x²+x-20)(x²+8x-20)=18x²
х≠0
Делим обе части уравнения на х² ( первую скобку на х и вторую скобку на х)
(х+ 1- (20/х)) (х+8-(20/х))=18
Замена
х +1 - (20/х) =t, тогда
х+8-(20/х)=t+7
t(t+7)=18
t²+7t-18=0
D=49-4·(-18)=49+72=121
t=(-7±11)/2
t=-9 или t=2
Обратная замена
x+1-(20/x)=-9
x²+10x-20=0
D=100+80=180
x₁,₂=(10±6√5)/2
x₁=5-3√5; x₂=5+3√5
x+1-(20/x)=2
x²-x-20=0
D=1+80
x₃,₄=(1±9)/2
x₃=-4 ;x₄=5
b)
Приводим к общему знаменателю:
(4x·x-(x-2)(x+2)-(x+2)²)/(x+2)²·x=0
Раскрываем скобки в числителе
(2x^2-4x)/(x+2)²·x = 0
2x(x-2)=0
x≠0; x≠-2
x=2 - корень уравнения
с)
Умножаем обе части уравнения на (х+1)²(х-1)²≠0:
x²(x+1)²+x²(x-1)²=90(x+1)²(x-1)²
x⁴+2x³+x²+x⁴-2x³+x²=90(x²-1)²
x⁴+x²=45x⁴-90x²+45
Получили биквадратное уравнение:
44x⁴-91x²+45=0
D=91²-4·44·45=8281-7920=361
x²=(91±19)/88
x²=5/4 или x²=9/11x=±√(5/4) или x=±√(9/11)
б) x^3+1=(x+1)( x^2 - xy +1)
в) m^3+27=(m+3)(m^2-3m+9)
г) 8+c^3=(2+c)(4-2c+c^2)
д) y^3+1/8=(y+1/2)(y^2-1/2y+1/4)
e) 8/27+z^3=(2/3+z)(4/9-2/3z+z)