2. Найдем нули производной (критические точки): 3х = 0 х = 0 2. Определим знаки производной: видно, что от бесконечности до нуля знак производной отрицателен (функция убывает) , а от нуля до бесконечности - знак производной положителен (функция возрастает) 3. Вывод: точка х = 0 - точка минимум, так как знак производной меняется с минуса на плюс
Сложение: 0,5+0,5=1 0,2+2,9=3,1 45,5+45,5=91 21,1=56,7=77,8 10,8+1,8=12,6 23,7+1,1=24,8 50,1+90,7=140,8 100,9+1000,9=1101,8 8,0+44,4=52,4 56,9+100,1=157 вычитание: 157-100,1=56,9 52,4-44,4=8 1101,8-1000,9=-100,9 (вычитание по аналогии со сложение из суммы вычитаешь одно слагаемое получаешь другое со знаком + или -) умножение: 1,5*1,5=2,25 0*10438467,9=0 100,6*54,6=5492,76 54,9*0,1=5,49 80*0,9=72 45,9*21,3=977,67 90,1*80,4=7244,04 11,1*11,1=123,21 8,9*1,1=9,79 90,1*43,4=3883,31 деление : (аналогично как и умножение только получившееся делишь на 1 из множителей и получаешь другой!) например: 3883,31:43,4=90,1
Формула сокращенного умножения (а+в)^2 выражение в квадрате, т.е. умножить само на себя два раза (а+в)^2=(а+b)*(a+b) умножить многочлен на многочлен, т.е. каждое слагаемое первого множителя умножаем на каждое слагаемое второго (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)= умножение одночлена на многочлен по распределительному закону (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+a*b+a*b+b^2 приводим подобные слагаемые (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+ a*b+a*b+b^2=a^2+2ab+b^2 (а+в)^2=a^2+2ab+b^2 -формула сокращенного умножения, запоминаем первое и последнее, пропуская выкладки
2. Найдем нули производной (критические точки): 3х = 0
х = 0
2. Определим знаки производной: видно, что от бесконечности до нуля знак производной отрицателен (функция убывает) , а от нуля до бесконечности - знак производной положителен (функция возрастает)
3. Вывод: точка х = 0 - точка минимум, так как знак производной меняется с минуса на плюс