1) Функция убывает там, где производная отрицательна y ' = 6x^2 - 18x - 24 = 6(x^2 - 3x - 4) = 6(x + 1)(x - 4) < 0 x ∈ (-1; 4)
2) По теореме косинусов AB = 10
3) Если пар-пед описан около цилиндра, то у него в основании квадрат со стороной, равной диаметру цилиндра a = 2R = 8. Высота равна высоте цилиндра H = 5. V = a^2*H = 8*8*5 = 320 куб.см.
4) Область определения логарифма x^2 - 14x > 0 x(x - 14) > 0 x ∈ (-oo; 0) U (14; +oo) Основание логарифма 0 < 1/2 < 1, поэтому функция убывает. x^2 - 14x - 32 <= 0 (x + 2)(x - 16) <= 0 x ∈ [-2; 16] С учетом области определения x ∈ [-2; 0) U (14; 16]
5) 1 уравнение возводим в квадрат Подставляем 2 уравнение в 1 уравнение y = 3x; подставляем в 1 уравнение Умножаем все на 3x 3x^2 - 2x - 1 = 0 (x - 1)(3x + 1) = 0 x1 = 1; y1 = 3 x2 = -1/3; y2 = -1
У Тани получилось 2 карточки. Пусть х, b- стороны первой разрезанной карточки, тогда (a-x), b стороны другой разрезанной карточки Тани. P₁=2x+2b P₂=2(a-x)+2b=2a-2x+2b P₁+P₂=44 P₁+P₂=2a-2x+2b+2x+2b=2a+4b=44
Рассмотрим новые карточки Вани Стороны первой новой разрезанной карточки Вани y и а, тогда стороны второй разрезанной карточки Вани (b-y) и a. P₁'=2y+2a P₂'=2(b-y)+2a=2b-2y+2a P₁'+P₂'=40 P₁'+P₂'=2y+2a+2b-2y+2a=4a+2b=40
Сложим все новые периметры Р₁+Р₂+Р₁'+P₂'=4a+2b+2a+4b=6a+6b=3(2a+2b)=40+44 3*P=84 P=84/3 P=28 - исходный периметр карточек