1)а.Значение функции У=-2х+5 при х =0,5 находится подстановкой этого значения в формулу у = -2*0,5 + 5 = -1 + 5 = 4. б. значение аргумента при у=-5: -2х+5 = -5 2х = 10 х = 5. в. Чтобы узнать, принадлежит ли графику функции точки А(1;3)В(-1;6), надо подставить в формулу значение аргумента х1 = 1, х2 = -1 и сравнить значение функции и ординату точки. Если совпадают - то точка принадлежит графику функции. у1 = -2*1 + 5 = -2 + 5 = 3 - совпадают. у2 = -2*(-1) + 5 = 2 + 5 = 7 - не совпадают. 2) График функции У=3х+4 - это прямая линия. Координаты точек пересечения графика с осями координат определяются приравниванием х или у нулю. 3*0+4 = 4 = точка пересечения оси ординат (ось у) 3х+4 = 0 3х = -4 х = -4/3 = -1(1/3) - точка пересечения оси абсцисс (ось х). 3) График функции у=кх проходит через начало координат. Коэффициент к = dy/dx = -6 / 2 = -3. График проходит через 0 и заданную точку. 4) Точка пересечения графиков определяется решением уравнения -4х +1,3 = х - 2,7 5х = 4 х = 4/5 = 0,8 Вторая координата находится подстановкой полученного значения х в формулу одной из прямых у = -4*0,8 + 1,3 = -3,2 + 1,3 = -1,9 или у = 0,8 - 2,7 = -1,9. 5) Параллельные графики имеют равные коэффициенты при х: графику У=-3х+12 параллельна прямая У=3х-5.
Судя по условию задачи, машины выехали в одном направлении, и первая, более быстрая машина (ее скорость v₁ = 89 км/ч ) попутно догоняет вторую, медленную машину (ее скорость v₂=56 км/ч) и догонит ее в точке С:
89 км/ч→ 56 км\ч→ АB - - - - - С 99 км
Допустим, машины встретились в точке С. На это им потребовалось одинаковое время t, за которое они разные пути S₁ и S₂: S₁ = AB + BC = 99+BC S₂ = BC С другой стороны S₁= v₁t = 89t S₂ = v₂t = 56t Выразим неизвестное время t из первого и второго уравнений и приравняем полученные выражения (поскольку время одно и то же) : 99+BC = 89t, t = (99+BC) / 89 BC = 56t, t = BC / 56 (99+BC) / 89 = BC / 56 56(99+BC) = 89 BC 5544 + 56 BC = 89 BC 5544 = 33 BC BC = 5544 / 33 = 168 BC = 168 (км) t = BC/56 = 168/56 = 3 (ч)
ответ: на расстоянии 168 км от города B через 3 часа после выезда
Можно решить другим Представим, что вторая машина стоит в городе B. Тогда первая машина движется к ней со скоростью 89-56 = 33 км/ч Расстояние между машинами 99 км. И это расстояние будет пройдено первой машиной за время = путь / скорость = 99/33=3 ч. Зная время, можно перейти к первоначальным условиям задачи (обе машины движутся) и найти расстояние между точками B и C. Это удобнее сделать, исходя из движения второй машины, потому что она двигалась из точки B в точку C. длина BC = скорость второй машины * 3 часа = 56 км/ч * 3 ч = 168 км.
f(1)=3-2=1 наим