Cгруппируем слагаемые и используя формулу суммы кубов
а³+в³=(а+в)(а²-ав+в²), разложим на множители левую часть уравнения.
(x³+8)-(3x²+6x)=0; (х+2)(х²-2х+4)-3х*(х+2) =0;
(x+2)(x²-2x+4-3x)=0;
(x+2)(x²-5x+4)=0;
x+2=0; х=-2 или х²-5х+4=0 , ДЛЯ последнего УРАВНЕНИЯ
x₁·x₂=4
x₁+x₂=5, теперь просто подберите два числа, чтобы если их сложить, получить второй коэффициент, но с противоположным знаком, т.е. 5, а если перемножить, то получить свободный член с тем же знаком,т.е. 4, ясно, что это 1 и 4, т.к. 1+4=5; 1*4=4
ответ 1; 4; -2.
Найдем сумму арифметической прогрессии этих чисел:
Сумма чисел без первого числа будет равна:
10х + 45 - х = 9х + 45
Если убрали не первое число, то полученная сумма больше, чем 961.
Составим неравенство и решим его:
9х + 45 > 961
9х > 961 - 45
9х > 916
х > 916 : 9
x > 101,777777778
Допустим, что первое наименьшее число х = 102,
тогда сумма всех 10 чисел равна:
1065 - 961 = 104 - число, которое убрали.
ответ: 104.