1.Решите неравенство методом интервалов
-х(в квадрате)-12х<0
-x^2-12x<0
-x(x-12)<0
x(x-12)>0
ищем критические точки х=0 - первая точка, х-12=0, х=12 - вторая точка
+ - +
012>x
x=13: x(x-12)=13*(13-12)>0
значитна промежутке (12;+бесконечность) л.ч. неравенства больше 0
при переходе через точку 12, меняем знак с + на -, и получаем, что на промежутке (0;12) л.ч. неравенства меньше 0
при переходе через точку 0 меняем знак с - на + ,и получаем, что на промежутке
(-бесконечность; 0) л.ч неравенства больше 0,
таким образом решением неравенства будет
(-бесконечность; 0)обьединение(12;+бесконечность)
2.При каких значениях параметра m уравнение
4х(в квадрате)-2mx+9=0
имеет два различных корня?
уравнение имеет два различных корня если дискриминант больше 0, т.е.
D=(-2m)^2-4*4*9=4m^2-144>0
4(m^2-36)>0
m^2-36>0
(m-6)(m+6)>0
ищем критические точки m+6=0, m=-6 - первая точка, m-6=0, m=6 - вторая точка(-6<6)
+ - +
(-6)6>m
x=7: (m-6)(m+6)=(7-6)(7+6)>0
значитна промежутке (6;+бесконечность) л.ч. неравенства больше 0
при переходе через точку 6, меняем знак с + на -, и получаем, что на промежутке (-6;6) л.ч. неравенства меньше 0
при переходе через точку -6 меняем знак с - на + ,и получаем, что на промежутке
(-бесконечность; -6) л.ч неравенства больше 0,
таким образом решением неравенства будет
m Є (-бесконечность; -6)обьединение(6;+бесконечность)
В решении.
Объяснение:
Дана функция y=x²-9. Построй график функции y=x²-9 .
График - парабола, ветви направлены вверх.
Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 7 0 -5 -8 -9 -8 -5 0 7
a) координаты вершины параболы: (0; -9)
х₀= -b/2а= 0/2= 0;
у₀= 0²-9= -9.
б) при каких значениях аргумента значения функции отрицательны?
Смотрим на график, у<0 при х от -3 до 3, то есть, х∈(-3, 3).
в) при каких значениях аргумента функция возрастает?
Согласно графика [0; +∞ ) .
г) при каких значениях аргумента Функция убывает?
Согласно графика (-∞, 0].
12x^3y^2-6x^2y+6x^2y-15x=12x^3y^2-15x=12x^3y^2-10x-25
25=5x
x=5
равенство верно при х=5 и любом y