М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tar02
tar02
23.03.2021 05:39 •  Алгебра

Найдите 6m где m среднее арифметическое корней уравнения(2х-1) модуль х+5модуль закрывается=-2(1-2х)

👇
Ответ:
праллель
праллель
23.03.2021
(2х -1)|x +5| = -2(1-2x)
a) x + 5 ≥ 0, ⇒ x ≥ -5
(2x -1)(x+5) = -2(1 -2x)
2x² +10x -x -5 = -2 +4x
2x² +10x -x -5 +2 -4x = 0
2x²+5x -3 = 0
D = b² -4ac = 25 +24 = 49
x₁= 2/4 = 0,5
x₂ = -3
б) х +5 < 0,⇒ x < -5
(2x -1)(-x -5) = -2(1 -2x)
-2x² -10x +x +5 = -2 +4x
-2x² -10x +x +5 +2 -4x = 0
-2x² -13x +7 = 0
2x² +13x -7 = 0
D = b² -4ac = 169 + 56 = 225
x₁= (-13+15)/4 = 0.5
x₂ = -7
Ищем среднее арифметическое корней.
m = (0,5 -3 -7):3 = -9,5:3  = -95/30= -17/6
6m = -17/6 * 6 = - 17
4,7(50 оценок)
Открыть все ответы
Ответ:
FraGamer228
FraGamer228
23.03.2021
Числовая окружность хорошо иллюстрирует тригонометрические функции.

Образно так: общеизвестно - все точки на числовой плоскости имеют две координаты: абсциссу и ординату. Точки, которые лежат на единичной окружности тоже имеют две координаты, но у них особое название: абсциссу называют косинусом и ординату - синусом.
На единичной окружности есть круговая шкала: начало шкалы в точке пересечения с осью Ох - по круговой шкале  это начало отсчета, там стоит 0. против часовой стрелки откладываются положительные значения, по часовой - отрицательные. Значения откладываются в радианах, мы знаем что 180°= π радиан, 360°=2π,  90°=π/2,  270°=3π/2.Эти значения соответствуют точкам пересечения единичной окружности с осями координат. 4π=720°, это два оборота, т е в той же точке что и 2π. (Красные точки)
4,7(15 оценок)
Ответ:
Сергейрг
Сергейрг
23.03.2021
1.  Первую часть я уже выпоняла.
Числовая окружность хорошо иллюстрирует тригонометрические функции.
Образно так: общеизвестно - все точки на числовой плоскости имеют две координаты: абсциссу и ординату. Точки, которые лежат на единичной окружности тоже имеют две координаты, но у них особое название: абсциссу называют косинусом и ординату - синусом.
На единичной окружности есть круговая шкала: начало шкалы в точке пересечения с осью Ох - по круговой шкале  это начало отсчета, там стоит 0. против часовой стрелки откладываются положительные значения, по часовой - отрицательные. Значения откладываются в радианах, мы знаем что 180°= π радиан, 360°=2π,  90°=π/2,  270°=3π/2.Эти значения соответствуют точкам пересечения единичной окружности с осями координат. 4π=720°, это два оборота, т е в той же точке что и 2π. (Красные точки)
2.  t= \pi n,n \in Z.  Если перебрать целые значения n, то получим числа:
 ...,-3 \pi ,-2 \pi ,- \pi ,0, \pi, 2 \pi, 3\pi,....Это точки числовой окружности отмеченные, начиная с 0 через \pi, (т е через полкруга). против часовой стрелки положительные значения, по часовой - отрицательные. Положительные значения из промежутка [0;2π] мы можем показать на окружности, таких значений два: 0 и \pi остальные будут совпадать с уже указанными,  отрицательные значения из промежутка [-2π;0], их тоже два 0 и  -\pi, для данной формулы тоже совпадут с уже указанными.
t=б \frac{ \pi }{3}+ \pi n,n \in Z.  Это точки числовой окружности отмеченные, начиная с \frac{ \pi }{3} через \pi, (т е через полкруга) против часовой стрелки положительные значения, и  начиная с -\frac{ \pi }{3} через \pi, (т е через полкруга) по часовой - отрицательные. И опять на промежутке [0;2π] мы можем показать на окружности только два значения: \frac{ \pi }{3} и \frac{4 \pi }{3}= \pi + \frac{ \pi }{3}, остальные совпадут с уже указанными, и на промежутке [-2π;0]  тоже два значения: -\frac{ \pi }{3} и  - \frac{4 \pi }{3}= -(\pi + \frac{ \pi }{3}) тоже совпадут с уже указанными.В целом мы отметили на окружности 4 точки:  \frac{ \pi }{3},  \frac{4 \pi }{3}= \pi + \frac{ \pi }{3},  -\frac{ \pi }{3},   - \frac{4 \pi }{3}= -(\pi + \frac{ \pi }{3}).   
Короче
t= \pi n,n \in Z. На промежутке [0;2π]  два значения: 0 и \pi, остальные  для n \in Z совпадут с уже указанными.
t=б \frac{ \pi }{3}+ \pi n,n \in Z.  на промежутке [0;2π]  два значения: \frac{ \pi }{3} и \frac{4 \pi }{3}= \pi + \frac{ \pi }{3}, на промежутке [-2π;0]  тоже два значения: -\frac{ \pi }{3} и  - \frac{4 \pi }{3}= -(\pi + \frac{ \pi }{3}) остальные  для n \in Z совпадут с уже указанными. Всего на окружности отмечено 4 точки:  (\frac{ \pi }{3}),  (\frac{4 \pi }{3}),  (-\frac{ \pi }{3}),   (- \frac{4 \pi }{3}).

1) найдите на числовой окружности точку, которая соответствует заданному числу -/2 2 ) найдите на чи
1) найдите на числовой окружности точку, которая соответствует заданному числу -/2 2 ) найдите на чи
4,4(93 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ