ответ: Подпишитесь на мой канал в ютубе
Объяснение:
По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
у(- х) = tg (3 * (- x)) = tg (- 3x) = - tg 3x = - (y(x)), следовательно, данная функция является нечетной.
Таких точек 2 - одна точка касания, вторая - точка пересечения.
Находим точку касания.
y(k) = y'(хо)*(x - xo) + y(xo).
Производная равна y' = x² - 4.
Подставим координаты точки М, через которую проходит касательная.
18 = (xо² - 4)*(0 - хо) + (1/3)хо³ - 4хо,
-xо³ + (1/3)хо³ = 18,
(-2/3)хо³ = 18,
хо³ = -54/2 = -27.
хо = ∛(-27) = -3.
уо = (1/3)*(-27) - 4*(-3) = -9 + 12 = 3.
Точка касания А(-3; 3).
Уравнение касательной:
y(k) = (9 - 4)*(x -(-3) + (-9 + 12) = 5x + 15 + 3 = 5x + 18.
Находим точку пересечения.
5x + 18 = (1/3)x³ - 4x,
(1/3)x³ - 9x - 18 = 0.
Разложив на множители (х - 6)(х + 3)² = 0 получаем 2 корня:
х = 6 и х = -3 (это точка касания).
Точка В: у = 5*6 + 18 = 48.
ответ: точки А(-3; 3) и В(6; 48).
так как 1/2×а×в
угол лежащий против угла в 30 градусов равен половине гипотенузы=>1/2×6×3=9