1. а). 2x+6-xy-3y=2(x+3)-y(x+3)=(2-y)(x+3); б). 2x²+2-x³-x^5=2(x²+1)-x³(1+x²)=(2-x³)(x²+1). 2. 3xy-6y-x²+2x=3y(x-2)-x(x-2)=(x-2)(3y-x) – дальше я решить не могу, Вы не написали, чему равен "y", у меня просто прочерк. 3. А про третье, простите, не знаю)
Угадываем корень: х=3 Подставляем в уравнение: 81+27-72-27-9=0 Сошлось. Значит х=3- корень уравнения. Делим уравнение на корень и получаем х³+4х²+4х+3 Соответственно: (х³+4х²+4х+3)(х-3)=0 Продолжаем в том же духе, угадываем следующий корень. Поломав голову, вышло х=-3. Проверим: -27+36-12+3=0. Сошлось. Таким же образом делим и это уравнение. Получаем х²+х+1=0 Правда тут почему-то нет корней. Не знаю, может я где ошибся. Но получается, что всего тут два корня: х=3, х=-3. Если нужно подробное решение, то могу в вк скинуть, если хочешь.
ВЫПОЛНИМ ОПЕРАЦИЮ ПОТЕНЦИИРОВАНИЯ ТОГДА 1-2х ≤ 5х+25 так как основание лог меньше1 7х≥-24 х≥-24/7 Промежуток (-24/7 ; +бесконечность)
log3(x-6)+log3(x-8)>log3(27) log3 {(x-6)(x-8)}>log3(27) потенциируем обе части тогда (x-6)(x-8)>27 но тут не получается красивого решения, возможно в условии ошибка?
в третьем lgx (lgx+1) < 0 совокупность двух систем совокупность: первая система: lgx<0 ⇒решений нет (lgx+1)> 0 ⇒ вторая lgx>0 ⇒ промежуток (0;+бесконечность) (lgx+1)< 0 ⇒ lgx<-lg10 ⇒ х<0,1