где ответ Дˆ)つ (づ ●─● )づ (つ≧▽≦)つ (づ ●─● )づ (つ≧▽≦)つ (⊃。•́‿•̀。)⊃ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌
Объяснение:
┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┗(^0^)┓ ┗(^0^)┓ ┗(^0^)┓ ┗(^0^)┓ ψ(`∇´)ψ ψ(`∇´)ψ ψ(`∇´)ψ ψ(`∇´)ψ (¦3[▓▓] (¦3[▓▓] (¦3[▓▓] (¦3[▓▓] (¦3[▓▓] ( ‾́ ◡ ‾́ ) ⟵(๑¯◡¯๑) {[(-_-)(-_-)]} {[(-_-)(-_-)]} o(〃^▽^〃)o (⁄ ⁄•⁄ω⁄•⁄ ⁄) (╭☞•́⍛•̀)╭☞ (╯°口°)╯︵ ┻━┻ (ノT_T)ノ ^┻━┻ ♪ \\(^ω^\\ ) (ノ≧∇≦)ノ ミ ┻━┻ (┛◉Д◉)┛彡┻━┻ (ノ◕ヮ◕)ノ*.✧ ᕙ(@°▽°@)ᕗ ᕙ( ͡◉ ͜ ʖ ͡◉)ᕗ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ ᕙ( ͡◉ ͜ ʖ ͡◉)ᕗ
Эта математическая программа подробно решает следующие неравенства с одной переменной.
Линейные
Неравенства сводящиеся к виду: \( ax+b > 0 \) (знак сравнения любой).
Например:
Квадратные
Неравенства сводящиеся к виду: \( ax^2+bx+c > 0 \) (знак сравнения любой).
Например:
Дробные
Неравенства сводящиеся к виду: \( \Large \frac{a_1x^2+b_1x+c_1}{a_2x^2+b_2x+c_2}\normalsize > 0 \) (знак сравнения любой).
Коэффициенты \( a_1 \) и \( a_2 \) могут быть нулевыми, т.е. и в числителе и в знаменателе дроби может быть и линейный и квадратный многочлен.
Например:
Разбитые на множители
Если в правой части - ноль, а в левой части полином(ы) разбит(ы) на линейные множители, т.е. множители вида \( ax+b \)
Например:
tg107 можно расписать формулой приведения
tg(90+17) т.к. 90 то меняется на ctg четверть 2 значит
-ctg
5tg17*tg(90+17)=
5tg17*(-ctg17)= Дальше формула:tga*ctga=1
5*(-1)=-5