52 представим как 16+36 и сгруппируем (x²-8x+16)+(y²+12y+36)=0 (x-4)²+(y+6)²=0 Квадрат не может быть отрицательным. И сумма двух неотрицательных чисел равна нулю только тогда, когда каждое из них=0 (x-4)²=0, x-4=0, х=4 (y+6)²=0, у+6=0, у=-6
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
Сумма и разность считается след образом, например:3_1/2 - 1_3/5 = 1) приводятся дроби к общему знаменателю;=3_5/10 - 1_6/10 =2) при вычитании, можно занимать целую часть в уменьшаемом для возможности работать с дробной частью=2_15/10 - 1_6/10 = 3) вычитаем целые части, вычитаем дробные части, получаем= 1_9/104) при необходимости и возможности производим сокращения в дробной части.= 1_9/10 = 1,9 (в данном случаем перевели в десятичную дробь)С суммой аналогично: 2_1/3 + 1_4/5 = 2_5/15 + 1_12/15 = 3_17/15 = 4_2/15 Умножение и деление смешанных чисел происходят след образом:1_2/3 * 2_3/5 = 1) Переводим смешанные числа в неправильную дробь= 5/3 * 13/5 = 2) числитель умножаем на числитель, знаменатель на знаменатель=(5*13) / (3 * 5) = 3) производим сокращения, если они возможны=13/ 3 =4) выделяем целую часть в получившейся неправильной дроби:=4_1/3 С делением аналогично, только действуем по правилам деления дробей, т е умножаем на дробь, обратную делителю.2_3/4 : 1_5/6 = 11/4 : 11/6 = 11/ 4 * 6/11 = (11*6) / (4*11) = 6/4 = 3/2 = 1_1/2
и сгруппируем
(x²-8x+16)+(y²+12y+36)=0
(x-4)²+(y+6)²=0
Квадрат не может быть отрицательным. И сумма двух неотрицательных чисел равна нулю только тогда, когда каждое из них=0
(x-4)²=0, x-4=0, х=4
(y+6)²=0, у+6=0, у=-6