a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
1)4x+y=3
6x-2y=1
y = 3-4x
6х - 2(3-4x) = 1
6х - 6 + 8х = 1
14 х = 7
х = 2
y = 3-4*2
y= - 5
ответ: х = 2
y = - 5
2)2(3x+2y) + 9 = 4x+21
2x+10= 3-(6x+5y)6х-4у=1
у=1,5х-3,5
6х-4(1,5х-3,5)=1
у=1,5х-3,5
6х-6х=4,5
у=1,5х-3,5
0=4,5 - неверное равенство, следовательно система уравнений не имеет смысла.
5)х-количество облигаций по 2000руб. у-по 3000 руб
х+у=8
2000х+3000у=19000
1)х=8-у
2)2000(8-у)+3000у=19000
16000-2000у+3000у=19000
1000у=3000
у=3
3)х=8-3
х=5
x^2-5x+6=0
Д=25-4*6=1
х1=(5-1)/2=2
х2=(5+1)/2=3
теперь промежутки монотонности:
(-беск, 2) +, возрастает
(2,3) - , убывает
(3,+беск) +, возрастае
х=2 - макс
х=3 - мин