Квадратные уравнения решаются очень легко. Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант:
Если уравнение не имеет решений (вообще имеет, но это в школе не проходят). Если то уравнение имеет 1 решение (корень). Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
Решение 1) Проведём сечение через высоту и апофему пирамиды. Это сечение представляет из себя прямоугольный треугольник, гипотенуза которого равна апофеме l, катет, лежащий в основании будет являться радиусом вписанной в шестиугольник окружности r = a√3/2, где а = √3. Второй катет является высотой пирамиды h = 2. Найдём r = (√3*√3)/2 = 3/2 = 1,5 По теореме Пифагора находим апофему пирамиды: l = √(h² + r²) = √(4 + 1,5²) = √6,25 = 2,5 ответ: 2,5 2) По условию задачи, через 5 минут после начала опыта масса изотопа стала равна 120 мг. Значит значит время от начала момента будет (t -5) мин. Решим неравенство: 120 * 2^(-(t - 5)/12) ≤ 7,5 2^(-(t - 5)/12) ≤ 7,5/120 2^(-(t - 5)/12) ≤ 0,0625 2^(-(t - 5)/12) ≤ 2⁻⁴ -(t - 5) / 12 ≤ - 4 t - 5 ≤ 4*12 t ≤ 48 + 5 t ≤ 53 (мин) ответ: t ≤ 53 (мин)
{х+5у=-7 /х(-3)
{3х+2у=5
{-3х-15у=21
-13у=26
у=-2
х-10=-7
х=3