Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
Пример 1
Решить систему линейных уравнений:
Здесь у нас дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа 5 и 7) расположены в левой части уравнения. Вообще говоря, без разницы, где они находятся, слева или справа, просто в задачах по высшей математике нередко они расположены именно так. И такая запись не должна приводить в замешательство, при необходимости систему всегда можно записать «как обычно»: . Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.
Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти множество её решений. Решение системы представляет собой набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений). Не тушуйтесь, это общее определение =) У нас же будет всего лишь одно значение «икс» и одно значение «игрек», которые удовлетворяют каждому уравнению с-мы.
Существует графический метод решения системы, с которым можно ознакомиться на урокеПростейшие задачи с прямой. Там же я рассказал о геометрическом смысле системы двух линейных уравнений с двумя неизвестными. Но сейчас на дворе эра алгебры, и числа-числа, действия-действия.
Решаем: из первого уравнения выразим:
Полученное выражение подставляем во второе уравнение:
Раскрываем скобки, приводим подобные слагаемые и находим значение :
Далее вспоминаем про то, от чего плясали:
Значение нам уже известно, осталось найти:
ответ: x=-4,y=1
1) -х³ + 3х² + х +1
3) 3х³ +10х² +4х —2
Объяснение:
Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.
1) (х-1)² - х(х+1)(х-3) =
=х² + 1² —2*х*1 - х*(х*х + 1*х +х*(-3) +1*(-3)) =
=х² +1 — 2х - х*(х² + х — 3х —3) =
=х² +1 — 2х - х*(х² — 2х —3) =
=х² +1 — 2х - х*х² - х*(-2х) +х*3 =
=х² +1 — 2х - х³ +2х² +3х=
=-х³ + 3х² + х +1
3) (х-2)² + 3(х+1)³ - (х+9) =
= х² + 2² —2*2*х +
+ 3*(х³ +3*х²*1 +3*х*1² +1³) -
- 1*х —1*9=
= х² +4 —4х +3(х³ +3х² +3х +1) —х —9 =
= х² —5 —5х +3(х³ +3х² +3х +1) =
= х² —5 —5х +3*х³ +3*3х² +3*3х +3*1 =
= х² —5 —5х +3х³ +9х² +9х +3 =
= 3х³ +10х² +4х —2
1\ab²-a²b
1\(m-n)³