М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lelik213
Lelik213
12.06.2022 07:25 •  Алгебра

Заранее ! доведіть,що при будь-якому натуральному n значення виразу n^3+3n^2+2n кратне 6

👇
Ответ:
EgaBelyaev
EgaBelyaev
12.06.2022
Что значит, что число делится на 6? это значит что оно делится на 2 и на 3 одновременно
n³+3n²+2n=n(n²+3n+2)
n²+3n+2=0
D=3²-4*2=9-8=1
√D=1
n₁=(-3-1)/2=-2
n₂=(-3+1)/2=-1
n³+3n²+2n=n(n²+3n+2)=n(n+1)(n+2)
n, (n+1) и (n+2) - это три последовательных числа, среди них обязательно одно четное (то есть делится на 2) и одно, которое делится на 3
Итак, мы доказали, что n³+3n²+2n делится на 6 при любом целом n
4,6(30 оценок)
Открыть все ответы
Ответ:
99669888Nina
99669888Nina
12.06.2022

10k+1

16

1216

Объяснение:

1. Любое натуральное число, которое даёт при делении на 10 остаток 1, можно записать в виде 10k+1, где k − 0;1;2...

2. Для того чтобы узнать, сколько существует таких натуральных чисел, которые не превосходят 160, необходимо рассмотреть арифметическую прогрессию (an), где a1=1,d=10, и n — натуральное число;

(a1=1, так как 1 — натуральное число, и при делении на  10 даёт остаток 1).

an=(n−1)d+a1;(n−1)d+a1≤160;(n−1)⋅10+1≤160;10n−10+1≤160;n≤16910;n≤16,9.

Так как n — натуральное число, то получим n= 16.

3. Остаётся найти сумму всех 16 членов арифметической прогрессии.

Сумму первых n членов арифметической прогрессии можно найти, используя формулу:

Sn=(a1+an)⋅n2, где n — число членов последовательности, и an=a1+(n−1)d.

В заданном случае: n= 16; d= 10; a1=1; a16=10⋅(16−1)+1=151.

Подставив значения в формулу суммы первых n членов арифметической прогрессии, получим:

 

S16=(a1+an)n2=(1+151)⋅162=1216.

4,4(77 оценок)
Ответ:
Dianaaaaaaaaaa03
Dianaaaaaaaaaa03
12.06.2022

10k+1

16

1216

Объяснение:

1. Любое натуральное число, которое даёт при делении на 10 остаток 1, можно записать в виде 10k+1, где k − 0;1;2...

2. Для того чтобы узнать, сколько существует таких натуральных чисел, которые не превосходят 160, необходимо рассмотреть арифметическую прогрессию (an), где a1=1,d=10, и n — натуральное число;

(a1=1, так как 1 — натуральное число, и при делении на  10 даёт остаток 1).

an=(n−1)d+a1;(n−1)d+a1≤160;(n−1)⋅10+1≤160;10n−10+1≤160;n≤16910;n≤16,9.

Так как n — натуральное число, то получим n= 16.

3. Остаётся найти сумму всех 16 членов арифметической прогрессии.

Сумму первых n членов арифметической прогрессии можно найти, используя формулу:

Sn=(a1+an)⋅n2, где n — число членов последовательности, и an=a1+(n−1)d.

В заданном случае: n= 16; d= 10; a1=1; a16=10⋅(16−1)+1=151.

Подставив значения в формулу суммы первых n членов арифметической прогрессии, получим:

 

S16=(a1+an)n2=(1+151)⋅162=1216.

4,4(92 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ