10k+1
16
1216
Объяснение:
1. Любое натуральное число, которое даёт при делении на 10 остаток 1, можно записать в виде 10k+1, где k − 0;1;2...
2. Для того чтобы узнать, сколько существует таких натуральных чисел, которые не превосходят 160, необходимо рассмотреть арифметическую прогрессию (an), где a1=1,d=10, и n — натуральное число;
(a1=1, так как 1 — натуральное число, и при делении на 10 даёт остаток 1).
an=(n−1)d+a1;(n−1)d+a1≤160;(n−1)⋅10+1≤160;10n−10+1≤160;n≤16910;n≤16,9.
Так как n — натуральное число, то получим n= 16.
3. Остаётся найти сумму всех 16 членов арифметической прогрессии.
Сумму первых n членов арифметической прогрессии можно найти, используя формулу:
Sn=(a1+an)⋅n2, где n — число членов последовательности, и an=a1+(n−1)d.
В заданном случае: n= 16; d= 10; a1=1; a16=10⋅(16−1)+1=151.
Подставив значения в формулу суммы первых n членов арифметической прогрессии, получим:
S16=(a1+an)n2=(1+151)⋅162=1216.
10k+1
16
1216
Объяснение:
1. Любое натуральное число, которое даёт при делении на 10 остаток 1, можно записать в виде 10k+1, где k − 0;1;2...
2. Для того чтобы узнать, сколько существует таких натуральных чисел, которые не превосходят 160, необходимо рассмотреть арифметическую прогрессию (an), где a1=1,d=10, и n — натуральное число;
(a1=1, так как 1 — натуральное число, и при делении на 10 даёт остаток 1).
an=(n−1)d+a1;(n−1)d+a1≤160;(n−1)⋅10+1≤160;10n−10+1≤160;n≤16910;n≤16,9.
Так как n — натуральное число, то получим n= 16.
3. Остаётся найти сумму всех 16 членов арифметической прогрессии.
Сумму первых n членов арифметической прогрессии можно найти, используя формулу:
Sn=(a1+an)⋅n2, где n — число членов последовательности, и an=a1+(n−1)d.
В заданном случае: n= 16; d= 10; a1=1; a16=10⋅(16−1)+1=151.
Подставив значения в формулу суммы первых n членов арифметической прогрессии, получим:
S16=(a1+an)n2=(1+151)⋅162=1216.
n³+3n²+2n=n(n²+3n+2)
n²+3n+2=0
D=3²-4*2=9-8=1
√D=1
n₁=(-3-1)/2=-2
n₂=(-3+1)/2=-1
n³+3n²+2n=n(n²+3n+2)=n(n+1)(n+2)
n, (n+1) и (n+2) - это три последовательных числа, среди них обязательно одно четное (то есть делится на 2) и одно, которое делится на 3
Итак, мы доказали, что n³+3n²+2n делится на 6 при любом целом n