a)y(наиб)=2
y(наим)=-2
b)y(наим)=-29
y(наиб)=31
Объяснение:
a)
1)Находим производную функции :
f'(x)=3x^2-3
2) Приравниваем производную к 0 ( находим нули производной):
3x^2-3=0 --> x=1
x=-1
3) Промежутку принадлежит только точка x=1 , поэтому значения функции на концах и в точке 1:
f(0)=0
f(1)=-2-наим
f(2)=8-6=2-наиб
б)
1)Находим производную функции :
f'(x)=3x^2+3
2) Приравниваем производную к 0 ( находим нули производной):
3x^2+3=0 --> решений нет , значит наибольшее значение достигает правом конце отрезка [-3;3] , а наименьшее - в левом:
3) f(-3)=-27-3+1=-29
f(3)=27+3+1=31
2) ответ номер 3, у=9, так как он параллелен оси х
3)5х+3·0 -15=0
5х-15=0
5х=15
х=3 точка А(3;0) -точка пересечения графика с осью ох.
4)6x-7y+12=0 вместо у подставляем нуль и считаем, 6х-7·0 +12=0
6х=-12
х=-2 это и есть абсцисса
В(-2;0) -точка пересечения графика с осью ох.